【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),點(diǎn)C在x軸上. (Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過點(diǎn)(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.
【答案】解:(Ⅰ)設(shè)點(diǎn)C(a,0),由BA⊥BC,可得 KBAKBC= =﹣1,∴a=4, 故所求的圓的圓心為AC的中點(diǎn)(1,0)、半徑為 AC=3,
故要求Rt△ABC外接圓的方程為(x﹣1)2+y2=9.
(Ⅱ)由題意可得,要求的直線的斜率一定存在,設(shè)要求直線的方程為y=k(x+4),
即 kx﹣y+4k=0,當(dāng)直線和圓相切時(shí),圓心到直線的距離等于半徑,
故有 d= =3,求得k=± ,
故要求的直線的方程為 3x﹣4y+12=0,或 3x+4y+12=0.
【解析】(Ⅰ)設(shè)點(diǎn)C(a,0),由BA⊥BC,KBAKBC=﹣1,求得a的值,可得所求的圓的圓心、半徑,可得要求圓的方程.(Ⅱ)設(shè)要求直線的方程為y=k(x+4),根據(jù)圓心到直線的距離等于半徑,即d= =3,求得k的值,可得要求的直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在五面體中, , ,
, ,平面平面.
(1) 證明: 直線平面;
(2) 已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N*),設(shè)bn= ,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,底面側(cè)面, , 為的中點(diǎn), .
(1)證明: .
(2)若是棱上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù):f(x)= ,f(x)=x4 , f(x)=2x , f(x)=x﹣ ,則可以輸出的函數(shù)是( )
A.f(x)=
B.f(x)=x4
C.f(x)=2x
D.f(x)=x﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國(guó)電子商務(wù)蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購(gòu)平臺(tái)的銷售業(yè)績(jī)高達(dá)516億元人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)該網(wǎng)購(gòu)平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng). 從該評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%的把握認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)服務(wù)滿意之間有關(guān)系”?
對(duì)服務(wù)滿意 | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品滿意 | 80 | ||
對(duì)商品不滿意 | |||
合計(jì) | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知BC邊上的高所在直線的方程為x﹣2y+1=0,∠A平分線所在直線的方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2), (Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com