【題目】程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù):f(x)= ,f(x)=x4 , f(x)=2x , f(x)=x﹣ ,則可以輸出的函數(shù)是(
A.f(x)=
B.f(x)=x4
C.f(x)=2x
D.f(x)=x﹣

【答案】D
【解析】解:由題得輸出的函數(shù)要滿足是奇函數(shù)且有零點, f(x)= 與x軸無交點,故不存在零點,故不符合題意;
f(x)=x4是偶函數(shù),故不符合題意;
f(x)=2x是非奇非偶函數(shù),故不符合題意;
f(x)=x﹣ 是奇函數(shù),且存在零點,符合題意,
故只有f(x)=x﹣ 符合題意,
故選:D.
【考點精析】認真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對函數(shù)中,相同的是(
A.f(x)=lgx2 , g(x)=2lgx
B.f(x)=lg ,g(x)=lg(x+1)﹣lg(x﹣1)
C.f(u)= ,g(v)=
D.f(x)=x,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用兩角和與差的正弦、余弦公式證明:
sinαcosβ=[sin(α+β)+sin(α﹣β)];
cosαsinβ=[sin(α+β)﹣sin(α﹣β)];
cosαsinβ=[cos(α+β)+cos(α﹣β)];
sinαcosβ=[cos(α+β)﹣cos(α﹣β)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,a2=3,且an+2=|an+1|﹣an , n∈N* , 記{an}的前n項和為Sn , 則S100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點B(0,﹣2 ),點C在x軸上. (Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過點(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(2,0),及⊙C:x2+y2﹣6x+4y+4=0.
(1)當(dāng)直線l過點P且與圓心C的距離為1時,求直線l的方程;
(2)設(shè)過點P的直線與⊙C交于A、B兩點,當(dāng)|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)證明: 上為增函數(shù);

(3)證明:方程=0沒有負數(shù)根。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某生產(chǎn)線上隨機抽取40件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標值,得到如下的頻數(shù)表

頻數(shù)

3

15

17

5

(1)估計該技術(shù)指標值的平均數(shù)(以各組區(qū)間中點值為代表);

(2)若,則該產(chǎn)品不合格,其余合格產(chǎn)品。產(chǎn)生一件產(chǎn)品,若是合格品,可盈利100元,若不是合格品則虧損20元。從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取2件,記為這2件產(chǎn)品的總利潤,求隨機變量的分布列和期望值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=8﹣f(4+x),函數(shù)g(x)= ,若函數(shù)f(x)與g(x)的圖象共有168個交點,記作Pi(xi , yi)(i=1,2,…,168),則(x1+y1)+(x2+y2)+…+(x168+y168)的值為(
A.2018
B.2017
C.2016
D.1008

查看答案和解析>>

同步練習(xí)冊答案