【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析(2)(3)在線段上存在一點(diǎn)滿足題意,且
【解析】
(1)由題意結(jié)合線面平行的判定定理即可證得題中的結(jié)論;
(2)建立空間直角坐標(biāo)系,利用兩個(gè)半平面的法向量可得二面角的余弦值,然后利用同角三角函數(shù)基本關(guān)系可得二面角的正弦值;
(3)假設(shè)點(diǎn)Q存在,利用直線的方向向量和平面的法向量計(jì)算可得點(diǎn)Q的存在性和位置.
(1)因?yàn)樗倪呅?/span>為矩形,所以為的中點(diǎn).連接,
在中,分別為的中點(diǎn),所以,
因?yàn)?/span>平面,平面,
所以平面.
(2)易知兩兩垂直,如圖以為原點(diǎn),分別以所在直線為軸,建立空間直角坐標(biāo)系.
則,所以.
設(shè)平面的法向量為,
則即解得
令,得
所以平面的一個(gè)法向量為.
設(shè)平面的法向量為,
,據(jù)此可得 ,
則平面的一個(gè)法向量為,
,于是.
故二面角的正弦值為.
(3)設(shè)存在點(diǎn)滿足條件.
由,
設(shè),整理得,
則.
因?yàn)橹本與平面所成角的大小為,
所以
解得,
由知,即點(diǎn)與重合.
故在線段上存在一點(diǎn),且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材中指出:當(dāng)很小,不太大時(shí),可以用表示的近似值,即 (1),我們把近似值與實(shí)際值之差除以實(shí)際值的商的絕對(duì)值稱為“相對(duì)近似誤差”,一般用字母表示,即相對(duì)近似誤差
(1)利用(1)求出的近似值,并指出其相對(duì)近似誤差(相對(duì)近似誤差保留兩位有效數(shù)字)
(2)若利用(1)式計(jì)算的近似值產(chǎn)生的相對(duì)近似誤差不超過(guò),求正實(shí)數(shù)的取值范圍;
(3)若利用(1)式計(jì)算的近似值產(chǎn)生的相對(duì)近似誤差不超過(guò),求正整數(shù)的最大值。(參考對(duì)數(shù)數(shù)值:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問(wèn)中有如下問(wèn)題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開(kāi)始每天派出的人數(shù)比前一天多7人.”在該問(wèn)題中的1864人全部派遣到位需要的天數(shù)為( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開(kāi)線”,曲線與軸有兩個(gè)焦點(diǎn),且經(jīng)過(guò)點(diǎn)
(1)求的值;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求的最小值;
(3)過(guò)且斜率為的直線與“羽毛球形線”相交于點(diǎn)三點(diǎn),問(wèn)是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)整數(shù)數(shù)列{an}共有2n()項(xiàng),滿足,,且().
(1)當(dāng)時(shí),寫(xiě)出滿足條件的數(shù)列的個(gè)數(shù);
(2)當(dāng)時(shí),求滿足條件的數(shù)列的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù)x,滿足,則稱為“局部奇函數(shù)”.
已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;
若為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)圖形中,正方體棱上的四個(gè)中點(diǎn)共面的圖形是( ).
A.甲與乙B.乙與丙C.丙與丁D.丁與甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì) n N ,設(shè)拋物線 y2 2(2n 1) x ,過(guò) P 2n, 0 任作直線 l 與拋物線交與 An, Bn兩點(diǎn),則數(shù)列的前 n 項(xiàng)和為_____;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com