【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù)x,滿足,則稱為“局部奇函數(shù)”.
已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍;
若為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
【答案】(1)是“局部奇函數(shù)”;(2) ;(3).
【解析】
運(yùn)用兩角和與差的正弦公式,化簡(jiǎn),再由由局部奇函數(shù)的定義,即可判斷;
根據(jù)局部奇函數(shù)的定義,可得方程在上有解,運(yùn)用換元法,令,則,求出右邊的值域即可;
根據(jù)“局部奇函數(shù)”的定義可知,有解即可設(shè),則,即有方程等價(jià)為在時(shí)有解,設(shè),由對(duì)稱軸和區(qū)間的關(guān)系,列出不等式,解出即可.
解:由于,,
則,由于,則,
當(dāng)時(shí),成立,由局部奇函數(shù)的定義,可知該函數(shù)為“局部奇函數(shù)”;
根據(jù)局部奇函數(shù)的定義,時(shí),可化為,
因?yàn)?/span>的定義域?yàn)?/span>,所以方程在上有解,
令,則,
設(shè),則,
當(dāng)時(shí),,故在上為減函數(shù),
當(dāng)時(shí),,故在上為增函數(shù),
所以時(shí),所以,
即.
根據(jù)“局部奇函數(shù)”的定義可知,函數(shù)有解即可,
即,
,
即有解即可.
設(shè),則,
方程等價(jià)為在時(shí)有解,
設(shè),
對(duì)稱軸,
若,則,
即,
,此時(shí),
若,要使在時(shí)有解,
則,即,
解得,
綜上得,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學(xué)、生物、政治、歷史、地理6門學(xué)科(3門理科,3門文科)中選擇3門學(xué)科參加等級(jí)考試,小李同學(xué)受理想中的大學(xué)專業(yè)所限,決定至少選擇一門理科學(xué)科,那么小李同學(xué)的選科方案有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷售某種配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).
參考公式:回歸直線方程,其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點(diǎn),,四邊形為矩形,線段交于點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對(duì)該單位120名職工進(jìn)行一次業(yè)務(wù)技能測(cè)試,測(cè)試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測(cè)試結(jié)果,將它們編號(hào)后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測(cè)試合格,“×”表示測(cè)試不合格).
表1:
編號(hào)\測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項(xiàng)測(cè)試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.
①設(shè)抽取的這10名職工中,每名職工測(cè)試合格的項(xiàng)數(shù)為,根據(jù)上面的測(cè)試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;
②假設(shè)各名職工的各項(xiàng)測(cè)試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測(cè)試中,測(cè)試難度的計(jì)算公式為,其中為第項(xiàng)測(cè)試難度,為第項(xiàng)合格的人數(shù),為參加測(cè)試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測(cè)試合格人數(shù)及相應(yīng)的實(shí)測(cè)難度如下表(表2):
表2:
測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測(cè)難度,為第項(xiàng)的預(yù)測(cè)難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)測(cè)合理,否則為不合理,測(cè)試前,預(yù)估了每個(gè)預(yù)測(cè)項(xiàng)目的難度,如下表(表3)所示:
表3:
測(cè)試項(xiàng)目 | 1 | 2 | 3 | 4 | 5 |
預(yù)測(cè)前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),.若圓上存在唯一點(diǎn),使得直線,在軸上的截距之積為,則實(shí)數(shù)的值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上有個(gè)點(diǎn),將每一個(gè)點(diǎn)染上紅色或藍(lán)色.從這個(gè)點(diǎn)中,任取個(gè)點(diǎn),記個(gè)點(diǎn)顏色相同的所有不同取法總數(shù)為.
(1)若,求的最小值;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了年月至年月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 月接待游客逐月增加
B. 年接待游客量逐年減少
C. 各年的月接待游客量高峰期大致在月
D. 各年月至月的月接待游客量相對(duì)于月至月,波動(dòng)性較小,變化比較穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com