函數(shù)f(x)=ax3+(a-1)x2+48(b-3)x+b的圖象關(guān)于原點(diǎn)成中心對稱,則f(x)( )
A.在 上為增函數(shù)
B.在上不是單調(diào)函數(shù)
C.在上為減函數(shù),在上為增函數(shù)
D.在為增函數(shù),在也為增函數(shù)
【答案】分析:由題意判斷出f(x)必為奇函數(shù),由此根據(jù)奇函數(shù)的定義列出方程組,進(jìn)而求出函數(shù)的解析式,求出導(dǎo)函數(shù)后,分析導(dǎo)函數(shù)在各個(gè)區(qū)間上的符號,即可得到答案.
解答:解:由f(x)關(guān)于原點(diǎn)中心對稱,即f(x)是奇函數(shù),
,解得a=1,b=0,
則f(x)=x3-144x
∴f′(x)=3x2-144=3(x2-48)=3(x-)(x+),
令f′(x)>0,則x<-或x>
令f′(x)<0,則-<x<
∴f(x)在(-,)上為減函數(shù),在(-∞,-),(,+∞)上是增函數(shù),
故選D.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,及函數(shù)奇偶性的性質(zhì),其中根據(jù)已知條件判斷出函數(shù)為奇函數(shù),進(jìn)而求出函數(shù)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′.
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π12
)=1
;
③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
 
;
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實(shí)數(shù)a等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案