如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中點.
(1)求證:AM=CM;
(2)若N是PC的中點,求證:DN∥平面AMC.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°,E為線段AB的中點,將△ADE沿直線DE翻折成△A′DE,使平面A′DE⊥平面BCD,F為線段A′C的中點.
(1)求證:BF∥平面A′DE;
(2)設(shè)M為線段DE的中點,求直線FM與平面A′DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點O,AC、BD交于點M,E為AB的中點,F(xiàn)為AA1的中點.求證:
(1)C1、O、M三點共線;
(2)E、C、D1、F四點共面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,在矩形ABCD中,AB=a,BC=a,以對角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點與P點重合),P點在平面ACD上的射影恰好落在邊AD上的H處.
(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,點A,B,E,A1在一個平面內(nèi),AB=BC=CC1=2,AC=2.
證明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.
(1)求證:;
(2)在棱上確定一點,使、、、四點共面,并求此時的長;
(3)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,底面△ABC是等邊三角形,D為AB中點.
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CD⊥DA1,求證:三棱柱ABCA1B1C1是正三棱柱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com