【題目】已知函數(shù)
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】
(Ⅰ)對(duì)函數(shù)求導(dǎo),討論當(dāng)時(shí),時(shí),時(shí),時(shí),由導(dǎo)數(shù)大于0,可得增區(qū)間,由導(dǎo)數(shù)小于0,可得減區(qū)間;(Ⅱ)由(Ⅰ)的單調(diào)區(qū)間,對(duì)討論,結(jié)合單調(diào)性和函數(shù)值的變化特點(diǎn),即可得到所求范圍.
(Ⅰ)由題,
(1)當(dāng)時(shí),故時(shí),函數(shù)單調(diào)遞減,時(shí),函數(shù)單調(diào)遞增;
(2)當(dāng)時(shí),故時(shí),,函數(shù)單調(diào)遞增,時(shí),,函數(shù)單調(diào)遞減,時(shí),,函數(shù)單調(diào)遞增;
(3)當(dāng)時(shí),恒成立,函數(shù)單調(diào)遞增;
(4)當(dāng)時(shí),故時(shí),函數(shù)單調(diào)遞增,
時(shí),函數(shù)單調(diào)遞減,
時(shí),函數(shù)單調(diào)遞增;
(Ⅱ)當(dāng)時(shí),有唯一零點(diǎn)不符合題意;
由(Ⅰ)知:當(dāng)時(shí),故時(shí),函數(shù)單調(diào)遞減,時(shí),函數(shù)單調(diào)遞增,時(shí),;時(shí),,必有兩個(gè)零點(diǎn);
當(dāng)時(shí),故時(shí),函數(shù)單調(diào)遞增,
時(shí),函數(shù)單調(diào)遞減,時(shí),函數(shù)單調(diào)遞增,,函數(shù)至多有一個(gè)零點(diǎn);
當(dāng)時(shí),函數(shù)單調(diào)遞增,函數(shù)至多有一個(gè)零點(diǎn);
當(dāng)時(shí),故時(shí),函數(shù)單調(diào)遞增,時(shí),函數(shù)單調(diào)遞減,時(shí),函數(shù)單調(diào)遞增,,函數(shù)至多有一個(gè)零點(diǎn);
綜上所述:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】江蘇省淮陰中學(xué)科技興趣小組在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn).設(shè)計(jì)方案如圖,航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對(duì)稱軸、為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為.觀測(cè)點(diǎn)同時(shí)跟蹤航天器,試問:當(dāng)航天器在軸上方時(shí),觀測(cè)點(diǎn),測(cè)得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?(變軌指令發(fā)出時(shí)航天器立即變軌)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸正方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.
(1)求證:當(dāng)點(diǎn)F,A,D不共線時(shí),線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個(gè)結(jié)論正確嗎?如果正確,請(qǐng)證明;如果不正確,請(qǐng)說(shuō)明能否改變個(gè)別已知條件使上述結(jié)論成立,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a∈R),若函數(shù)恰有5個(gè)不同的零點(diǎn),則的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 若方程恰有三個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=+xlnx,g(x)=x3﹣x2﹣3.
(1)討論函數(shù)h(x)=的單調(diào)性;
(2)如果對(duì)任意的s,t∈[,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.記“”為事件,求事件的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com