【題目】已知函數(shù)為奇函數(shù),且相鄰兩對稱軸間的距離為
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸正方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短為原來的(縱坐標(biāo)不變),得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的值域.
【答案】(1)
(2)
【解析】
(1)首先求得函數(shù)的解析式,然后結(jié)合三角函數(shù)的性質(zhì)和函數(shù)的定義域即可確定其單調(diào)遞減區(qū)間;
(2)首先求得函數(shù)的解析式,然后結(jié)合函數(shù)的定義域和三角函數(shù)的性質(zhì)即可確定其值域.
(1)函數(shù),
且相鄰兩對稱軸間的距離為,可得,求得.
再根據(jù)f(x)為奇函數(shù),可得,即,
取,故.
由于,故,
當(dāng)即時(shí)函數(shù)單調(diào)遞減.
的單調(diào)遞減區(qū)間為.
(2)將函數(shù)y=f(x)的圖象沿x軸方向向右平移個(gè)單位長度,可得函數(shù)的圖象;
再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象,
當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體上任意選擇個(gè)頂點(diǎn),然后將它們兩兩相連,則可能組成的幾何圖形為_________(寫出所有正確結(jié)論的編號(hào)).
①矩形;②不是矩形的平行四邊形;③有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體;④每個(gè)面都是等邊三角形的四面體;⑤每個(gè)面都是直角三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,已知側(cè)面,,,,點(diǎn)在棱上.
(1)求的長,并證明平面;
(2)若,試確定的值,使得到平面的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面平面平面,且位于與之間.點(diǎn),,,,.
(1)求證:.
(2)設(shè)AD與CF不平行,且A,B,C,D為定點(diǎn),與間的距離為,與間的距離為h.當(dāng)的值是多少時(shí),的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)),直線l與圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).
(1)求圓心的極坐標(biāo);
(2)求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,梯形中,∥,,, ,將沿對角線折起.設(shè)折起后點(diǎn)的位置為,并且平面 平面.給出下面四個(gè)命題:
①;②三棱錐的體積為;③ 平面;
④平面平面.其中正確命題的序號(hào)是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com