【題目】已知某種商品每日的銷售量y(單位:噸)與銷售價(jià)格x(單位:萬元/噸,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x﹣4)2 +(a為常數(shù));當(dāng)3<x≤5時(shí),y=kx+7(k<0),已知當(dāng)銷售價(jià)格為3萬元/噸時(shí),每日可售出該商品4噸,且銷售價(jià)格x∈(3,5]變化時(shí),銷售量最低為2噸.
(1)求a,k的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該商品的銷售成本為1萬元/噸,試確定銷售價(jià)格x的值,使得每日銷售該商品所獲利潤最大.
【答案】(1),;
(2)x=2萬元/噸時(shí),每日銷售該商品所獲利潤最大.
【解析】
試題分析:(1)根據(jù)已知給出的表達(dá)式,由條件“銷售價(jià)格為3萬元/噸時(shí),每日可售出該商品4噸,且銷售價(jià)格x∈(3,5]變化時(shí),銷售量最低為2噸”,可求得,從而函數(shù)解析式,注意解析式是分段函數(shù);
(2)由(1)中所得銷售量乘以可得利潤,當(dāng)1<x≤3時(shí),利潤為
,利用導(dǎo)數(shù)的知識(shí)可求得此時(shí)的最大值,當(dāng)3<x≤5時(shí),每日銷售利潤f(x)=(﹣x+7)(x﹣1)=﹣x2+8x﹣7,由二次函數(shù)的性質(zhì)可求得此時(shí)的最大值,兩者比較可得最大值.
試題解析:(1)因?yàn)閤=3時(shí),y=4;所以a+3=4,得a=1
當(dāng)3<x≤5時(shí),y=kx+7(k<0)在區(qū)間(3,5]單調(diào)遞減,當(dāng)x=5時(shí),ymin=5k+7
因?yàn)殇N售價(jià)格x∈(3,5]變化時(shí),銷售量最低為2噸,所以5k+7=2,得k=﹣1
故.
(2)由(1)知,當(dāng)1<x≤3時(shí),
每日銷售利潤=x3﹣9x2+24x﹣10(1<x≤3)
f'(x)=3x2﹣18x+24. 令f'(x)=3x2﹣18x+24>0,解得x>4或x<2
所以f(x)在[1,2]單調(diào)遞增,在[2,3]單調(diào)遞減
所以當(dāng)x=2,f(x)max=f(2)=10,
當(dāng)3<x≤5時(shí),每日銷售利潤f(x)=(﹣x+7)(x﹣1)=﹣x2+8x﹣7=﹣(x﹣4)2+9
f(x)在x=4時(shí)有最大值,且f(x)max=f(4)=9<f(2)
綜上,銷售價(jià)格x=2萬元/噸時(shí),每日銷售該商品所獲利潤最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱錐中,分別是的中點(diǎn),都是正三角形,.
(1)求證:平面;
(2)求二面角的平面角的余弦值;
(3)若點(diǎn)在一個(gè)表面積為的球面上,求的邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù),討論函數(shù)的單調(diào)性;
(3)若(2)中函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,
直線與橢圓的一個(gè)交點(diǎn)為,點(diǎn)是橢圓上的任意—點(diǎn),延長交橢圓于點(diǎn),連接.
(1)求橢圓的方程;
(2)求的內(nèi)切圓的最大周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】機(jī)床廠今年年初用98萬元購進(jìn)一臺(tái)數(shù)控機(jī)床,并立即投入生產(chǎn)使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開始,該機(jī)床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對(duì)機(jī)床的處理方案有兩種:
(1)當(dāng)年平均盈利額達(dá)到最大值時(shí),以30萬元價(jià)格處理該機(jī)床;
(2)當(dāng)盈利額達(dá)到最大值時(shí),以12萬元價(jià)格處理該機(jī)床.
請(qǐng)你研究一下哪種方案處理較為合理?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求在區(qū)間 上的最小值;
(3)若函數(shù)有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)正三棱錐的零件,P是側(cè)面ACD上的一點(diǎn).
過點(diǎn)P作一個(gè)與棱AB垂直的截面,怎樣畫法?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“健步走”是一種方便而又有效的鍛煉方式,李老師每天堅(jiān)持“健步走”,并用計(jì)步器進(jìn)行統(tǒng)計(jì).他最近8天“健步走”步數(shù)的條形統(tǒng)計(jì)圖及相應(yīng)的消耗能量數(shù)據(jù)表如下:
(1)求李老師這8天“健步走”步數(shù)的平均數(shù);
(2)從步數(shù)為16千步,17千步,18千步的6天中任選2天,設(shè)李老師這2天通過“健步走”消耗的能量和為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.圓錐的底面是圓面,側(cè)面是曲面
B.用一張扇形的紙片可以卷成一個(gè)圓錐
C.一個(gè)物體上、下兩個(gè)面是相等的圓面,那么它一定是一個(gè)圓柱
D.圓臺(tái)的任意兩條母線的延長線可能相交也可能不相交
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com