正方形ABCD的邊長為4,點(diǎn)E在邊AB上,F(xiàn)、G在邊BC上,且AE=BF=2,BG=3.將此正方形沿DE、DF折起,使點(diǎn)A、C重合于點(diǎn)P,則三棱錐P-DEF中EF與DG所成角的余弦值為
 
考點(diǎn):異面直線及其所成的角
專題:空間位置關(guān)系與距離,空間角
分析:取PE(AE)的中點(diǎn)H,連接DH,HG,根據(jù)三角形中位線定理可得HG∥EF,故∠HGD即為EF與DG所成角,利用余弦定理,可得答案.
解答: 解:已知,如下圖所示:

取PE(AE)的中點(diǎn)H,連接DH,HG,
∵正方形ABCD的邊長為4,AE=BF=2,BG=3,
∴G,H分別為PE(AE)和PF(CF)的中點(diǎn),
∴HG∥EF,
故∠HGD即為EF與DG所成角,
∵DG=DH=
17
,HG=
1
2
EF=
2
,
故cos∠HGD=
HG2+DG2-DH2
2HG•DG
=
2+17-17
2•
2
17
=
34
34
,
故答案為:
34
34
點(diǎn)評:本題考查二面角的平面角,考查余弦定理,正確作出二面角的平面角是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b滿足
1
2
a+b=1
,則3a+9b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把110010(2)化為五進(jìn)制數(shù)的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若cosA•cosB-sinA•sinB>0,則這個三角形一定是(  )
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,F(xiàn)關(guān)于原點(diǎn)的對稱點(diǎn)為P,過F作x軸的垂線交拋物線于M,N兩點(diǎn),有下列四個命題:
①△PMN必為直角三角形;
②△PMN必為等邊三角形;
③直線PM必與拋物線相切;
④直線PM必與拋物線相交.
其中正確的命題是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如:62+1=37,則f(6)=3+7=10.記f1(m)=f(m),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n)),k∈N*,則f2015(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)對一切實數(shù)x,y都有g(shù)(x+y)-g(y)=x(x+2y+1)成立,且g(1)=0,設(shè)f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線
|x|
2
-
|y|
2
=1與直線y=2x+m有兩個交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x≥0
log
1
2
(-x),x<0
,則函數(shù)y=f(x)-(x2+1)的零點(diǎn)個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案