9.若實(shí)數(shù)x,y滿足$x=\sqrt{1-{y^2}}$,則$\frac{y+2}{x}$的取值范圍為(  )
A.$[{-\sqrt{3},\sqrt{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{\frac{{\sqrt{3}}}{3},+∞})$D.$[{\sqrt{3},+∞})$

分析 設(shè)過(guò)原點(diǎn)的右半個(gè)圓的切線方程為y=kx-2,再根據(jù)圓心(0,0)到切線的距離等于半徑,求得k的值,可得$\frac{y+2}{x}$的取值范圍.

解答 解:由題意可得,$\frac{y+2}{x}$表示右半個(gè)圓x2+y2=1上的點(diǎn)(x,y)與原點(diǎn)(0,-2)連線的斜率,
設(shè)k=$\frac{y+2}{x}$,故此圓的切線方程為y=kx-2,
再根據(jù)圓心(0,0)到切線的距離等于半徑,可得r=$\frac{|-2|}{\sqrt{1+{k}^{2}}}$=1,
平方得k2=3
求得k=±$\sqrt{3}$,故$\frac{y+2}{x}$的取值范圍是[$\sqrt{3}$,+∞),
故選:D.

點(diǎn)評(píng) 本題主要考查圓的切線性質(zhì),直線的斜率公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(0,1)∪{$\frac{5}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線$\left\{\begin{array}{l}x=5+tsin{30°}\\ y=-tcos{30°}\end{array}\right.(t為參數(shù))$的傾斜角是120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.命題:(1)三角形、梯形一定是平面圖形;
(2)若四邊形的兩條對(duì)角線相交于一點(diǎn),則該四邊形是平面圖形;
(3)三條平行線最多可確定三個(gè)平面;
(4)平面α和β相交,它們只有有限個(gè)公共點(diǎn);
(5)若A,B,C,D四個(gè)點(diǎn)既在平面α內(nèi),又在平面β內(nèi),則這兩平面重合.
其中正確命題的序號(hào)是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-3$\overrightarrow{a}$+6$\overrightarrow$,$\overrightarrow{CD}$=4$\overrightarrow{a}$-$\overrightarrow$,則(  )
A.A、B、D三點(diǎn)共線B.A、B、C三點(diǎn)共線C.B、C、D三點(diǎn)共線D.A、C、D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知角A,B為銳角,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,求sin(A+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),當(dāng)k為整數(shù)時(shí),向量$\overrightarrow{m}$=k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{n}$=$\overrightarrow{a}$+k$\overrightarrow$ 的夾角能否為60°?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{(\frac{1}{4})}^{x},x<1}\\{{log}_{\frac{1}{2}}x,x≥1}\end{array}\right.$,則f(f(-1))=( 。
A.2B.-2C.$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ln(x+1)-ax,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≥1-ex對(duì)x∈[0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案