【題目】已知橢圓經(jīng)過點,且長軸長是短軸長的2倍.

1)求橢圓的標準方程;

2)若點在橢圓上運動,點在圓上運動,且總有,求的取值范圍;

3)過點的動直線交橢圓于、兩點,試問:在此坐標平面上是否存在一個點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點?若存在,請求出點的坐標;若不存在,請說明由.

【答案】1.(23)存在,

【解析】

1)根據(jù)長軸長是短軸長的2倍,可得之間的關(guān)系,把點的坐標代入橢圓方程中,這樣可以求出的值,進而求出橢圓的標準方程;

2)設(shè),求出圓的圓心坐標,根據(jù)兩點間距離公式寫出的表達式,根據(jù)橢圓的范圍,求出的取值范圍,根據(jù)圓的半徑和的大小關(guān)系,進行分類討論,最后求出的取值范圍;

3)由對稱性可知,點一定位于軸上,設(shè),,

根據(jù)題意可以判斷,根據(jù)直線是否存在斜率進行分類討論.當存在斜率時,直線方程與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,結(jié)合,可以判斷存在定點滿足題意,并求出定點;當不存在斜率時,解方程組,最后判斷是否滿足剛得到定點條件.

1)因為長軸長是短軸長的2倍,所以有,橢圓過點

,所以有:所以橢圓的標準方程為;

2)設(shè),

,

,∴

時,,

時,

綜上,

3)由對稱性可知,點一定位于軸上,

設(shè),,,

*),

的斜率存在時,設(shè),代入橢圓方程,

,

,

則(*)式為,

,

整理,得,

,得

的斜率不存在時,,代入橢圓方程,得,

∴此時以為直徑的圓的方程為,也經(jīng)過點

綜上,存在滿足題設(shè)條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線Cy24x的焦點為F,過F的直線lC交于A,B兩點,點M的坐標為(﹣1,0.

1)當lx軸垂直時,求ABM的外接圓方程;

2)記AMF的面積為S1BMF的面積為S2,當S14S2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對在直角坐標系的第一象限內(nèi)的任意兩點,作如下定義:,那么稱點是點的“上位點”,同時點是點的“下位點”.

1)試寫出點的一個“上位點”坐標和一個“下位點”坐標;

2)設(shè)、、、均為正數(shù),且點是點的上位點,請判斷點是否既是點的“下位點”又是點的“上位點”,如果是請證明,如果不是請說明理由;

3)設(shè)正整數(shù)滿足以下條件:對任意實數(shù),總存在,使得點既是點的“下位點”,又是點的“上位點”,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與圓有且僅有兩個公共點,點、、分別是橢圓上的動點、左焦點、右焦點,三角形面積的最大值是

(1)求橢圓的方程;

(2)若點在橢圓第一象限部分上運動,過點作圓的切線,過點的垂線,求證:交點的縱坐標的絕對值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某公司生產(chǎn)線生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標,由檢測結(jié)果得如圖所示的頻率分布直方圖:

(Ⅰ)求這件產(chǎn)品質(zhì)量指標的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

(i)利用該正態(tài)分布,求;

(ii)已知每件該產(chǎn)品的生產(chǎn)成本為元,每件合格品(質(zhì)量指標值)的定價為元;若為次品(質(zhì)量指標值),除了全額退款外且每件次品還須賠付客戶元。若該公司賣出件這種產(chǎn)品,記表示這件產(chǎn)品的利潤,求.

附:.若,則 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當時,函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列的公差,項和為,且滿足,

1)試尋找一個等差數(shù)列和一個非負常數(shù),使得等式對于任意的正整數(shù)恒成立,并說明你的理由;

2)對于(1)中的等差數(shù)列和非負常數(shù),試求)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,.

(1)求證:

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.

(1)將直徑小于等于或直徑大于的零件認為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學期望;

(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.

查看答案和解析>>

同步練習冊答案