【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在分以下的學(xué)生后, 共有男生名,女生名,現(xiàn)采用分層抽樣的方法,從中抽取了名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為組, 得到如下頻數(shù)分布表.

)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績(jī)與性別有關(guān);

)規(guī)定分以上為優(yōu)分(含分),請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”,( ,其中

【答案】(Ⅰ)見解析(Ⅱ)見解析.

【解析】試題分析:(1)利用頻率分布表和平均數(shù)的計(jì)算公式即可.(2)可根據(jù)頻率分布表完成的列聯(lián)表,計(jì)算的值即可.

解析:(1),

從男、女生各自的平均分來看,并不能判斷數(shù)學(xué)成績(jī)與性別有關(guān).

(2)有頻率分布表可知:在抽取的名學(xué)生中,“男生組”中的優(yōu)分有人,“女生組”中的優(yōu)分有人,據(jù)此可得列聯(lián)表如下:

可得,因?yàn)?/span>,所以沒有%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失T(單位:元),空氣質(zhì)量指數(shù)API.在區(qū)間[0,100]對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間(100,300]對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API150時(shí)造成的經(jīng)濟(jì)損失為200元,當(dāng)API200時(shí),造成的經(jīng)濟(jì)損失為400元);當(dāng)API大于300時(shí)造成的經(jīng)濟(jì)損失為2000.

(1)試寫出函數(shù)T()的表達(dá)式:

(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于200元且不超過600元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān).

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最小值;

(2)若,不等式恒成立,求的取值范圍;

(3)若,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, ,點(diǎn)M是線段AB上的一點(diǎn),且

(1)證明:平面平面ABCD;

(2)求直線CM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面;

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為實(shí)數(shù),函數(shù),函數(shù)

(1) 當(dāng)時(shí),令,若恒成立,求實(shí)數(shù)的取值范圍;

(2) 當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)若,求的極小值;

(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)常數(shù),使得?若存在,求出的值.若不存在,說明理由;

(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明:對(duì)任意的.

查看答案和解析>>

同步練習(xí)冊(cè)答案