8.已知單位向量$\overrightarrow{{e}_{1}}$與單位向量$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,$\overrightarrow{OP}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{OP}$|等于( 。
A.5B.6C.$\sqrt{37}$D.$\sqrt{39}$

分析 根據(jù)平面向量的數(shù)量積與單位向量的概念,求出模長即可.

解答 解:單位向量$\overrightarrow{{e}_{1}}$與單位向量$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,
∴$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=1×1×cos$\frac{π}{3}$=$\frac{1}{2}$,
又$\overrightarrow{OP}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,
∴${|\overrightarrow{OP}|}^{2}$=9${\overrightarrow{{e}_{1}}}^{2}$+24$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$+16${\overrightarrow{{e}_{2}}}^{2}$
=9×1+24×$\frac{1}{2}$+16×1
=37,
∴|$\overrightarrow{OP}$|=$\sqrt{37}$.
故選:C.

點評 本題考查了平面向量的數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.現(xiàn)在人們都注重鍛煉身體,騎車或步行上下班的人越來越多,某公司甲、乙兩人每天可采用步行,騎車,開車三種方式上下班.步行到公司所用時間為1小時,騎車到公司所用時間為0.5小時,開車到公司所用時間為0.1小時.甲、乙兩人上下班方式互不影響.設(shè)甲、乙步行的概率分別為$\frac{1}{4},\frac{1}{2}$;騎車概率分別為$\frac{1}{2},\frac{1}{4}$.
(1)求甲、乙兩人到公司所用時間相同的概率;
(2)設(shè)甲、乙兩人到公司所用時間和為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(1,2),且與原點距離最大的直線方程是( 。
A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-3,-2,-1,0,1,2},B={x|(x+3)(x-1)<0},則A∩B=( 。
A.{0,1,2}B.{-2,-1,0}C.{-3,-2,-1,0,1}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知A⊆B,A⊆C,B={1,2,3,4,5},C={0,2,4,6,8},則A不可能是( 。
A.{1,2}B.{2,4}C.{2}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某地西紅柿從2月1日起開始上市,通過市場調(diào)查,得到西紅柿種植成本Q(單位:元/10kg)與上市時間t(單位:元)的數(shù)據(jù)如表:
時間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù)判斷,函數(shù)Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt中哪一個適宜作為描述西紅柿種植成本Q與上市時間t的變化關(guān)系?簡要說明理由;
(2)利用你選取的函數(shù),求西紅柿種植成本最低時的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{5}}}{5}$,短半軸的長為2.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點為F,上頂點為A,與直線FA平行的直線l與橢圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=t|x-t|(t≠0)在區(qū)間(-∞,-1]上單調(diào)遞增,則t的取值范圍是( 。
A.(-∞,-1]B.[-1,0)C.(0,1]D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案