分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),計(jì)算f(1),f′(1),求出切線方程即可;
(2)求出函數(shù)f(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值是f(1),證明結(jié)論即可.
解答 解:(1)a=0時(shí),f(x)=xlnx,(x>0),
f′(x)=lnx+1,f′(1)=1,f(1)=0,
故切線方程是:y=x-1;
即x-y-1=0.
(2)證明:f(x)=xlnx+$\frac{a}{x}$,(x>0),
f′(x)=lnx+1-$\frac{a}{{x}^{2}}$,f″(x)=$\frac{1}{x}$+$\frac{2a}{{x}^{3}}$>0,
故f′(x)在(0,+∞)遞增,
而f′(1)=1-a≤0,
故f(x)在(0,1)遞減,在(1,+∞)遞增,
故 f(x)≥f(1)=a≥1.
點(diǎn)評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e2=$\frac{\sqrt{2}+1}{2}$ | B. | e2=$\frac{\sqrt{3}+1}{2}$ | C. | e2=$\frac{3}{2}$ | D. | e2=$\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com