7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{10x-1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$(e為自然對數(shù)的底).若函數(shù)g(x)=f(x)-kx恰好有兩個零點,則實數(shù)k的取值范圍是( 。
A.(1,e)B.(e,10]C.(1,10]D.(10,+∞)

分析 令g(x)=0得出f(x)=kx,做出y=kx與y=f(x)的函數(shù)圖象,則兩圖象有兩個交點,求出y=f(x)的過原點的切線的斜率即可得出k的范圍.

解答 解:令g(x)=0得f(x)=kx,
∵g(x)有兩個零點,
∴直線y=kx與y=f(x)有兩個交點,
做出y=kx和y=f(x)的函數(shù)圖象,如圖所示:

設y=k1x與曲線y=ex相切,切點為(x0,y0),
則$\left\{\begin{array}{l}{{k}_{1}={e}^{{x}_{0}}}\\{{y}_{0}={e}^{{x}_{0}}}\\{{y}_{0}={k}_{1}{x}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=1}\\{{y}_{0}=e}\\{{k}_{1}=e}\end{array}\right.$.
∵y=kx與y=f(x)有兩個交點,
∴k的取值范圍是(e,10].
故選B.

點評 本題考查了函數(shù)零點的個數(shù)與函數(shù)的圖象的關(guān)系,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=log3|x-t|是偶函數(shù),記$a=f({{{log}_{0.3}}4}),b=f({{π^{1.5}}}),c=f({2-t})$則a,b,c的大小關(guān)系為( 。
A.a<c<bB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=4+3cost}\\{y=5+3sint}\end{array}}\right.$(其中t為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)若A、B分別為曲線C1,C2上的動點,求當|AB|取最小值時△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知a∈R,函數(shù)f(x)=ln(x+a)-x,曲線y=f(x)與x軸相切.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實數(shù)m使得$\frac{f(x)}{x}>m(1-{e^x})$恒成立?若存在,求實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.中國古代數(shù)學名著《九章算術(shù)》中記載了公元前344年商鞅制造一種標準量器-商鞅銅方升,其三視圖(單位:寸)如圖所示,若π取3,其體積為12.6(立方寸),則圖中x的為( 。
A.2.5B.3C.3.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖F1,F(xiàn)2是雙曲線${C_1}:{x^2}-\frac{y^2}{8}=1$與橢圓C2的公共焦點,點A是C1,C2在第一象限內(nèi)的公共點,若|F1F2|=|F1A|,則C2的離心率是(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知△ABC外接圓半徑是2,$BC=2\sqrt{3}$,則△ABC的面積最大值為$3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,函數(shù)g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若存在x1,x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,則實數(shù)m的取值范圍是( 。
A.(0,1]B.[1,2]C.[$\frac{2}{3}$,2]D.[$\frac{2}{3}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)離心率為$\frac{\sqrt{2}}{2}$,左、右焦點分別為F1,F(xiàn)2,左頂點為A,|AF1|=$\sqrt{2}$-1
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l經(jīng)過F2與橢圓交于M,N兩點,求$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_1}N}$取值范圍.

查看答案和解析>>

同步練習冊答案