5.已知數(shù)列{an}是公比為2的等比數(shù)列,若a4=16,則S4=(  )
A.15B.30C.31D.63

分析 由已知結(jié)合等比數(shù)列的通項公式求出首項,再由等比數(shù)列的前n項和得答案.

解答 解:在等比數(shù)列{an}中,由a4=16,q=2,
得${a}_{1}=\frac{{a}_{4}}{{q}^{3}}=\frac{16}{8}=2$,
∴${S}_{4}=\frac{{a}_{1}(1-{q}^{4})}{1-q}=\frac{2(1-{2}^{4})}{1-2}=30$.
故選:B.

點評 本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的前n項和,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f1(x)=x$,\;{f_2}(x)=\frac{1}{x}\;,\;{f_3}(x)={x^3}\;,\;{f_4}(x)=\sqrt{x}$,中,奇函數(shù)的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.菱形ABCD中,∠BAD=60°,點E滿足$\overrightarrow{DE}$=2$\overrightarrow{EC}$,若$\overrightarrow{AE}$•$\overrightarrow{BE}$=$\frac{17}{2}$,則該菱形的面積為( 。
A.$\frac{9}{2}$B.$\frac{9\sqrt{3}}{2}$C.6D.6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,表中數(shù)據(jù)滿足:
(1)第1行為1;
(2)第n(n≥2)行首尾兩數(shù)均為n;
(3)從第3行起每行除首尾兩個數(shù)外每個數(shù)等于上一行它肩上的兩個數(shù)之和.
則第n行(n≥2)第2個數(shù)是$\frac{{n}^{2}}{2}-\frac{n}{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.兩數(shù)$\frac{{\sqrt{6}+\sqrt{2}}}{4}$與$\frac{{\sqrt{6}-\sqrt{2}}}{4}$的等比中項是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{2}$或$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.平面向量$\overrightarrow{a}$、$\overrightarrow$滿足($\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.2B.-2C.1D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=x2-2x,(x<-1)的反函數(shù)是y=-$\sqrt{x+1}$+1,(x>3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.先閱讀下面的文字:“求$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$的值時,采用了如下的方式:令$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=x,則有x=$\sqrt{2+x}$,兩邊平方,可解得x=2(負(fù)值舍去)”.那么,可用類比的方法,求出2+$\frac{1}{2+\frac{1}{2+…}}$的值是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知扇形的半徑為6,圓心角為120°,則扇形的弧長為4π.

查看答案和解析>>

同步練習(xí)冊答案