A. | (-4,0) | B. | [-4,0) | C. | (-∞,-4) | D. | (0,+∞) |
分析 根據(jù)題意求出函數(shù)的導(dǎo)數(shù)并且通過(guò)導(dǎo)數(shù)求出出原函數(shù)的單調(diào)區(qū)間,進(jìn)而得到原函數(shù)的極值,因?yàn)楹瘮?shù)存在三個(gè)不同的零點(diǎn),所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值大于0,極小值小于0,即可單調(diào)答案.
解答 解:由題意可得:f′(x)=3x2-6x.
令f′(x)>0,則x>2或x<0,令f′(x)<0,則0<x<2,
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,0)和(2,+∞),減區(qū)間為(0,2),
所以當(dāng)x=0時(shí)函數(shù)有極大值f(0)=-k,當(dāng)x=2時(shí)函數(shù)有極小值f(2)=-4-k.
因?yàn)楹瘮?shù)f(x)存在三個(gè)不同的零點(diǎn),
所以f(0)>0并且f(2)<0,
解得:-4<k<0.
所以實(shí)數(shù)a的取值范圍是 (-4,0).
故選:A.
點(diǎn)評(píng) 解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與函數(shù)的極值,并且掌握通過(guò)函數(shù)零點(diǎn)個(gè)數(shù)進(jìn)而判斷極值點(diǎn)與0的大小關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=b b=a | B. | c=b b=a a=c | C. | b=a a=b | D. | a=c c=b b=a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -2 | C. | 2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com