15.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(m,2),且$\vec a⊥\vec b$,則m=1.

分析 根據(jù)向量垂直的坐標(biāo)公式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(m,2),且$\vec a⊥\vec b$,
∴$\overrightarrow{a}$•$\overrightarrow$=(2,-1)•(m,2)=2m-2=0,
得m=1,
故答案為:1.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量垂直等價(jià)為$\overrightarrow{a}$•$\overrightarrow$=0是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.用數(shù)字l,2,3,4,5,6組成的沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的六位數(shù)的個(gè)數(shù)是360.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若△ABC的頂點(diǎn)為A(3,6),B(-1,5),C(1,1),則BC邊上的中線AD的長(zhǎng)為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{13}=1({a>0})$與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$有相同的焦點(diǎn),則a的值為(  )
A.$\sqrt{19}$B.19C.25D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,AB,BC是兩條傍山公路,∠ABC=120°,現(xiàn)在擬從M,N兩處修建一條隧道(單位:千米).
若2BM=BN+MN,BM=BN+4,求隧道MN的長(zhǎng);
若MN=12,記∠MNB=θ,試用θ表示△MBN的周長(zhǎng)L,并求周長(zhǎng)L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.
(1)當(dāng)$a=\frac{1}{2}$時(shí),求(CuB)∩A.
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$-$\frac{1}{2}$,則函數(shù)y=f(x)的值域是(  )
A.[-$\frac{1}{2}$,1]B.(0,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在平面直角坐標(biāo)系xOy中,滿(mǎn)足x2+y2≤1,x≥0,y≥0的點(diǎn)P(x,y)的集合對(duì)應(yīng)的平面圖形的面積為$\frac{π}{4}$;類(lèi)似的,在空間直角坐標(biāo)系O-xyz中,滿(mǎn)足x2+y2+z2≤1,x≥0,y≥0,z≥0的點(diǎn)P(x,y,z)的集合對(duì)應(yīng)的空間幾何體的體積為( 。
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知平面上三個(gè)向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,其中$\overrightarrow{a}$=(1,2).
(1)若|$\overrightarrow{c}$|=3$\sqrt{5}$,且$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$的坐標(biāo);
(2)若|$\overrightarrow$|=3$\sqrt{5}$,且(4$\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+$\overrightarrow$),求$\overrightarrow{a}$與$\overrightarrow$夾角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案