精英家教網 > 高中數學 > 題目詳情
8.等差數列{an}的前n項和Sn,若a1=2,S3=12,則a5等于(  )
A.8B.10C.12D.14

分析 利用等差數列的通項公式、求和公式即可得出.

解答 解:設等差數列{an}的公差為d,∵a1=2,S3=12,∴3×2+3d=12,解得d=2.
則a5=2+4×2=10.
故答案為:10.

點評 本題考查了等差數列的通項公式、求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.一個半徑為2的球體經過切割之后所得幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.16πB.12πC.14πD.17π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若函數$f(x)=-\frac{1}{{\sqrt}}{e^{\sqrt{ax}}}(a>0,b>0)$的圖象在x=0出的切線與圓x2+y2=1相切,則2a+2b的最小值是( 。
A.4B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.(1)已知函數y=cos2α+sinα+3,求函數的最大值
(2)求f(x)=$\sqrt{2si{n}^{2}x+3sinx-2$+$log{\;}_{2}(-{x}^{2}+7x+8)}$的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.從裝有3個紅球、2個白球的袋中任取2個球,則所取的2個球中至少有1個白球的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛,經過t小時與輪船相遇.
(Ⅰ)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(Ⅱ)假設小艇的最高航行速度只能達到30海里/小時,試設計航行方案(即確定航行方向和航行速度的大。,使得小艇能以最短時間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.若x∈R,不等式|x-1|+|x-2|≤a的解集為非空集合、則實數a的取值范圍為( 。
A.[1,+∞)B.[2,+∞)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)記F(x)=f(x)-g(x),證明:F(x)在(1,2)區(qū)間內有且僅有唯一實根;
(2)證明:對?x∈(0,+∞),xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=alnx-x2,(a∈R)
(1)當a=2時,求函數y=f(x)在區(qū)間[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案