分析 (1)利用sin2α+cos2α=1對已知函數(shù)進行變形,然后利用配方法來求函數(shù)的最大值;
(2)根據(jù)二次根式的被開方數(shù)是非負數(shù)和對數(shù)函數(shù)定義域進行計算即可.
解答 解:(1)y=cos2α+sinα+3,
=1-sin2α+sinα+3,
=-(sinα-$\frac{1}{2}$)2+$\frac{17}{4}$.
當sinα=$\frac{1}{2}$時,y最大值=$\frac{17}{4}$.
(2)依題意得:$\left\{\begin{array}{l}{2si{n}^{2}x+3sinx-2≥0}\\{-{x}^{2}+7x+8>0}\end{array}\right.$,
整理,得
$\left\{\begin{array}{l}{(sinx+2)(2sinx-1)≥0}\\{(x-8)(x+1)<0}\end{array}\right.$,
所以$\left\{\begin{array}{l}{sinx≥\frac{1}{2}}\\{-1<x<8}\end{array}\right.$.
所以x∈[$\frac{π}{6}$,$\frac{5π}{6}$]∪[$\frac{13π}{6}$,8].
點評 本題考查了函數(shù)的定義域及其求法,三角函數(shù)的最值.考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個單位,再把各點的縱坐標伸長到原來的3倍(橫坐標不變) | |
B. | 向右平移$\frac{π}{6}$個單位,再把各點的縱坐標縮短到原來的3倍(橫坐標不變) | |
C. | 向左平移$\frac{π}{3}$個單位,再把各點的縱坐標縮短到原來的3倍(橫坐標不變) | |
D. | 向左平移$\frac{π}{6}$個單位,再把各點的縱坐標伸長到原來的3倍(橫坐標不變) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-4] | B. | [4,+∞) | C. | (-∞,-4]∪[4,+∞) | D. | (-∞,-4)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com