1.定積分$\int_0^1{(2x+{e^x})}$dx的值為e.

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可

解答 解:$\int_0^1{(2x+{e^x})}$dx=(x2+ex)|${\;}_{0}^{1}$=(1+e)-(0+1)=e,
故答案為:e,

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,若$a=\sqrt{3}$,b=1,A=2B,則邊長(zhǎng)c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|mx-2|-|mx+1|(m∈R).
(1)當(dāng)m=1時(shí),解不等式f(x)≤1;
(2)若對(duì)任意實(shí)數(shù)m,f(x)的最大值恒為n,求證:對(duì)任意正數(shù)a,b,c,當(dāng)a+b+c=n時(shí),$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)在(0,+∞)上可導(dǎo),且滿足f(x)>-xf′(x),則一定有( 。
A.函數(shù)F(x)=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù)B.函數(shù)F (x)=$\frac{f(x)}{x}$在(0,+∞)上為減函數(shù)
C.函數(shù)G(x)=xf(x)在(0,+∞)上為增函數(shù)D.函數(shù)G(x)=xf(x)在(0,+∞)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知函數(shù)y=cos2α+sinα+3,求函數(shù)的最大值
(2)求f(x)=$\sqrt{2si{n}^{2}x+3sinx-2$+$log{\;}_{2}(-{x}^{2}+7x+8)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“所有4的倍數(shù)都是2的倍數(shù),某數(shù)是4的倍數(shù),故該數(shù)是2的倍數(shù)”上述推理(  )
A.小前提錯(cuò)誤B.結(jié)論錯(cuò)誤C.大前提錯(cuò)誤D.正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時(shí)間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知(1-2x)10=a0+a1x+a2x2+…+a10x10,則a1+2a2+3a3+…+10a10=( 。
A.-20B.-15C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=mx-(m+2)lnx-$\frac{2}{x}$,g(x)=x2+mx+1,m∈R.
(1)當(dāng)m<0時(shí),
①求f(x)的單調(diào)區(qū)間;
②若存在x1,x2∈[1,2],使得f(x1)-g(x2)≥1成立,求m的取值范圍;
(2)設(shè)h(x)=$\frac{lnx+1}{{e}^{x}}$的導(dǎo)函數(shù)h′(x),當(dāng)m=1時(shí),求證[g(x)-1]h′(x)<1+e-2(其中e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案