11.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若$a=\sqrt{3}$,b=1,A=2B,則邊長c=2.

分析 利用正弦定理、勾股定理即可得出.

解答 解:由正弦定理可得:$\frac{\sqrt{3}}{sin2B}$=$\frac{1}{sinB}$,可得cosB=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),∴B=$\frac{π}{6}$,A=$\frac{π}{3}$.
∴C=π-A-B=$\frac{π}{2}$.
∴c=$\sqrt{{a}^{2}+^{2}}$=2.
故答案為:2.

點評 本題考查了正弦定理、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$-xlnx(a∈R),g(x)=2x3-3x2
(1)若m為正實數(shù),求函數(shù)y=g(x),x∈[$\frac{1}{m}$,m]上的最大值和最小值;
(2)若對任意的實數(shù)s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)  求證:BC⊥平面ACD;
(Ⅱ)求幾何體A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一小袋中有3只紅色、3只白色的乒乓球(其體積、質(zhì)地完成相同),從袋中隨機(jī)摸出3個球,
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個紅球1個白球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.要得到函數(shù)$f(x)=sin({3x+\frac{π}{3}})$的導(dǎo)函數(shù)f′(x)的圖象,只需將f(x)的圖象( 。
A.向右平移$\frac{π}{3}$個單位,再把各點的縱坐標(biāo)伸長到原來的3倍(橫坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個單位,再把各點的縱坐標(biāo)縮短到原來的3倍(橫坐標(biāo)不變)
C.向左平移$\frac{π}{3}$個單位,再把各點的縱坐標(biāo)縮短到原來的3倍(橫坐標(biāo)不變)
D.向左平移$\frac{π}{6}$個單位,再把各點的縱坐標(biāo)伸長到原來的3倍(橫坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=-(x-2)2+1,函數(shù)$g(x)=2sin(\frac{π}{6}x)sin(\frac{π}{6}x+\frac{π}{3})+a(a∈R)$,若存在x1,x2∈[1,4],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是[-$\frac{9}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點F是拋物線C:x2=2py(p>0)的焦點,點P(3,y0)(y0>1)是拋物線C上一點,且$|{PF}|=\frac{13}{4}$,⊙Q的方程為x2+(y-3)2=6,過點F作直線l,與拋物線C和⊙Q依次交于M,A,B,N.(如圖所示)
(1)求拋物線C的方程;
(2)求(|MB|+|NA|)•|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1:x+ay-2a-2=0,l2:ax+y-1-a=0.
(1)若l1∥l2,試求a的值;
(2)若l1⊥l2,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定積分$\int_0^1{(2x+{e^x})}$dx的值為e.

查看答案和解析>>

同步練習(xí)冊答案