分析 化簡g(x),求出f(x),g(x)在[1,4]上的值域,令兩值域有公共解即可.
解答 解:f(x)的圖象開口向下,對稱軸為x=2,
∴f(x)在[1,4]上的最大值為f(2)=1,最小值為f(4)=-3.
∴f(x)的值域為[-3,1],
g(x)=2sin($\frac{π}{6}x$)[$\frac{1}{2}$sin($\frac{π}{6}$x)+$\frac{\sqrt{3}}{2}$cos$\frac{π}{6}x$]+a=sin2($\frac{π}{6}x$)+$\sqrt{3}$sin($\frac{π}{6}x$)cos($\frac{π}{6}x$)+a
=$\frac{1-cos(\frac{π}{3}x)}{2}$+$\frac{\sqrt{3}}{2}$sin$\frac{π}{3}x$+a=sin($\frac{π}{3}$x-$\frac{π}{6}$)+$\frac{1}{2}$+a,
∵x∈[1,4],∴$\frac{π}{3}$x-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴a≤g(x)≤$\frac{3}{2}$+a,即g(x)的值域為[a,a+$\frac{3}{2}$].
∵存在x1,x2∈[1,4],使得f(x1)=g(x2)成立,
∴[-3,1]∩[a,a+$\frac{3}{2}$]≠∅.
-3≤a≤1或-3≤a+$\frac{3}{2}$≤1,
解得-$\frac{9}{2}$≤a≤1.
故答案為[-$\frac{9}{2}$,1].
點評 本題考查了函數(shù)值域的求法,三角函數(shù)恒等變換,集合的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 小前提錯誤 | B. | 結(jié)論錯誤 | C. | 大前提錯誤 | D. | 正確 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com