1.已知棱長為1的正方體有一個(gè)內(nèi)切球(如圖),E為ABCD的中心,A1E與球相交于FE,則EF的長為$\frac{{\sqrt{6}}}{3}$.

分析 求出球心到FE的距離,利用勾股定理求出EF.

解答 解:設(shè)球心O到FE的距離為d,則在△OA1E中,A1E=$\sqrt{1+\frac{1}{2}}$,OE=$\frac{1}{2}$.
由等面積可得$\frac{1}{2}×\frac{1}{2}×\frac{\sqrt{2}}{2}=\frac{1}{2}×\sqrt{1+\frac{1}{2}}×d$,
∴d=$\frac{\sqrt{3}}{3}$,
∵球的半徑為$\frac{\sqrt{2}}{2}$,
∴EF=$2\sqrt{\frac{1}{2}-\frac{1}{3}}$=63.
故答案為:$\frac{{\sqrt{6}}}{3}$.

點(diǎn)評 本題考查正方體的內(nèi)切球,考查學(xué)生的計(jì)算能力,正確求出球心到FE的距離是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目標(biāo)函數(shù)z=mx-ny(m>0,n<0)的最大值為-6,則$\frac{n}{m-1}$的取值范圍是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合A={-2,-1,0,1,2},B={x|2x>1}則A∩B=( 。
A.{-1,2}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)是定義在R上的奇函數(shù),且$f(-1)=\frac{1}{2},f(x+2)=f(x)+2,則f(3)$=(  )
A.0B.1C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=-(x-2)2+1,函數(shù)$g(x)=2sin(\frac{π}{6}x)sin(\frac{π}{6}x+\frac{π}{3})+a(a∈R)$,若存在x1,x2∈[1,4],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是[-$\frac{9}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列動(dòng)點(diǎn)的軌跡方程:
(1)設(shè)圓C:(x-1)2+y2=1過原點(diǎn)O作圓的任意弦,求所作弦的中點(diǎn)的軌跡方程;
(2)在平面直角坐標(biāo)系xOy中,點(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1.記點(diǎn)M的軌跡為C,求軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是(  )
A.$y=-\frac{1}{x}$B.y=3-x-3xC.$y=ln({x+\sqrt{1+{x^2}}})$D.$y=\frac{{{3^x}+1}}{{{3^x}-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知半徑不等的兩圓均與直線AG相切于點(diǎn)A,大圓的弦BC與小圓相切于點(diǎn)D,
弦AB、AC分別與小圓相交于點(diǎn)E,F(xiàn).
(1)求證:AD為∠BAC的平分線;
(2)求證:BD•CF=CD•BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點(diǎn)A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測得樹頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計(jì)算這棵樹CD的高度5$\sqrt{3}$m.

查看答案和解析>>

同步練習(xí)冊答案