15.根據(jù)下表可知,K 2等于( 。
12總 計
120100
270
總 計200
A.43.3B.2.67C.53.3D.23.3

分析 填寫2×2列聯(lián)表,利用所給數(shù)據(jù),即可得出結(jié)論.

解答 解:由題意,

12總 計
12080100
23070100
總 計50150200
K2=$\frac{200(20×70-30×80)^{2}}{50×150×100×100}$≈2.67,
故選B.

點(diǎn)評 本題考查2×2列聯(lián)表,K2的計算,正確計算是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知某三棱錐的三視圖如圖所示,正視圖和俯視圖都是等腰直角三角形,則該三棱錐中最長的棱長為( 。
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(理科)已知數(shù)列{an}的前n項和Sn=n2-9n,第k項滿足5<ak<8,則k的值為8.
(文科)在△ABC中,A=60°,b=1,△ABC的面積為$\sqrt{3}$,則$\frac{a}{sinA}$=$\frac{2\sqrt{39}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若sinαtanα<0,且$\frac{cosα}{tanα}<0$,則角α是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)α∈(0,π),若cos(π-α)=$\frac{1}{3}$,則tan(α+π)=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)A,B分別是橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1長軸的左、右頂點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值(  )
A.$\frac{4\sqrt{3}}{5}$B.$\sqrt{15}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量${\overrightarrow m_1}$=(0,x),${\overrightarrow n_1}$=(1,1),${\overrightarrow m_2}$=(x,0),${\overrightarrow n_2}$=(y2,1)(其中x,y是實(shí)數(shù)),又設(shè)向量$\overrightarrow m$=${\overrightarrow m_1}$+$\sqrt{2}$${\overrightarrow n_2}$,$\overrightarrow n$=${\overrightarrow m_2}$-$\sqrt{2}$${\overrightarrow n_1}$,且$\overrightarrow m$∥$\overrightarrow n$,點(diǎn)P(x,y)的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)|MN|=$\frac{{4\sqrt{2}}}{3}$時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,F(xiàn)是線段BC的中點(diǎn)
(1)證明:PF⊥FD;
(2)若PB與平面ABCD所成的角為45o,求點(diǎn)A到平面PFD 距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求證:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該點(diǎn)的直線是異面直餞.

查看答案和解析>>

同步練習(xí)冊答案