分析 求出雙曲線的a,b,c,設(shè)F′是雙曲線的右焦點(diǎn),連接PF′.利用三角形的中位線定理和雙曲線的定義可得:|ON|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-2=|NF|-2,于是|ON|-|NT|=|NF|-|NT|-a=|FT|-a,連接OT,則OT⊥FT,在Rt△FOT中,|OF|=c,|OT|=a,運(yùn)用勾股定理,即可得出結(jié)論.
解答 解:如圖所示:
設(shè)F′是雙曲線的右焦點(diǎn),連接PF′.
雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的a=2,b=2$\sqrt{3}$,c=4,
∵點(diǎn)N,O分別為線段PF,F(xiàn)F′的中點(diǎn),
由三角形中位線定理得到:
|ON|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-2=|NF|-2,
∴|ON|-|NT|=|NF|-|NT|-2=|FT|-a,連接OT,
因?yàn)镻T是圓的切線,則OT⊥FT,
在Rt△FOT中,|OF|=4,|OT|=2,
∴|FT|=$\sqrt{|OF{|}^{2}-|OT{|}^{2}}$=b=2$\sqrt{3}$.
∴|ON|-|NT|=b-a=2$\sqrt{3}$-2.
故答案為:2$\sqrt{3}$-2.
點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),以及圓的切線的性質(zhì),考查三角形的中位線定理,以及運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com