14.甲、乙兩個(gè)同學(xué)下棋,若甲獲勝的概率0.3,甲、乙下成和棋的概率為0.4,則乙贏的概率為0.3.

分析 利用互斥事件概率加法公式能求出乙贏的概率.

解答 解:∵甲、乙兩個(gè)同學(xué)下棋,若甲獲勝的概率0.3,甲、乙下成和棋的概率為0.4,
∴乙贏的概率為:
p=1-0.3-0.4=0.3.
故答案為:0.3.

點(diǎn)評(píng) 本題考查概率、互斥事件概率加法公式等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查函數(shù)與方程思想、集合思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,證明:|1-4mn|>2|m-n|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間為(  )
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓的焦距為8,且橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)距離之和為10,則該橢圓的標(biāo)準(zhǔn)方程是 ( 。
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1
C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,將函數(shù)f(x)的圖象上的每個(gè)點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)的對(duì)稱中心的坐標(biāo)及f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在區(qū)間[-4,4]上隨機(jī)地取一個(gè)數(shù)a,則事件“對(duì)任意的正實(shí)數(shù)x,使x2-ax+1≥0成立”發(fā)生的概率為(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,a-b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)$\overrightarrow a$,$\overrightarrow b$是兩個(gè)不共線向量,且向量$\overrightarrow a+λ\overrightarrow b$與$-\overrightarrow b+2\overrightarrow a$共線,則λ=( 。
A.0B.$-\frac{1}{2}$C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.lg2+lg5=1,log42+2${\;}^{lo{g}_{2}3-1}$=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案