【題目】直線l與兩直線y=1,x﹣y﹣7=0分別交于A,B兩點(diǎn),若直線AB的中點(diǎn)是M(1,﹣1),則直線l的斜率為

【答案】
【解析】解:設(shè)直線l的斜率為k,又直線l過M(1,﹣1),則直線l的方程為y+1=k(x﹣1),聯(lián)立直線l與y=1,得到 ,
解得x= ,
∴A( ,1);
聯(lián)立直線l與x﹣y﹣7=0,得到
解得x= ,y=
∴B( , ),
又線段AB的中點(diǎn)M(1,﹣1),
,解得k=﹣
所以答案是:
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的斜率的相關(guān)知識(shí)可以得到問題的答案,需要掌握一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從盛滿2升純酒精的容器里倒出1升,然后加滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個(gè)重要象征.2016年某校社會(huì)實(shí)踐小組對(duì)某小區(qū)廣場(chǎng)舞的開展?fàn)顩r進(jìn)行了年齡的調(diào)查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:,,后得到如圖所示的頻率分布直方圖.

(l)計(jì)算這40名廣場(chǎng)舞者中年齡分布在的人數(shù);

(2)若從年齡在中的廣場(chǎng)舞者任取2名,求這兩名廣場(chǎng)舞者中恰有一人年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人射擊一次命中7~10環(huán)的概率如下表

命中環(huán)數(shù)

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

計(jì)算這名射手在一次 射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2eax , a>0.
(1)證明:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)若方程f(x)﹣1=0有且只有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左右焦點(diǎn),為原點(diǎn), 在橢圓上,線段軸的交點(diǎn)滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓右焦點(diǎn)作直線交橢圓于兩點(diǎn),交軸于點(diǎn),若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的導(dǎo)數(shù)y′=f′(x)仍是x的函數(shù),就把y′=f′(x)的導(dǎo)數(shù)y″=f″(x)叫做函數(shù)y=f(x)二階導(dǎo)數(shù),記做y2=f2(x).同樣函數(shù)y=f(x)的n﹣1階導(dǎo)數(shù)的導(dǎo)數(shù)叫做y=f(x)的n階導(dǎo)數(shù),表示yn=fn(x).在求y=ln(x+1)的n階導(dǎo)數(shù)時(shí),已求得 , ,根據(jù)以上推理,函數(shù)y=ln(x+1)的第n階導(dǎo)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).

(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;

(2)討論函數(shù)V(r)的單調(diào)性,并確定rh為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三項(xiàng)式(x2+x+1)n展開,當(dāng)n=0,1,2,3,…時(shí),得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法為:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(1+ax)(x2+x+1)5的展開式中,x8項(xiàng)的系數(shù)為67,則實(shí)數(shù)a值為

查看答案和解析>>

同步練習(xí)冊(cè)答案