Processing math: 45%
6.定義在區(qū)間(0,+∞)上的函數(shù)f(x)使不等式xf'(x)<4f(x)恒成立,其中f'(x)為f(x)的導數(shù),則( �。�
A.f2f116B.f2f18C.f2f14D.f2f12

分析 令g(x)=fxx4,(x>0),求出函數(shù)的導數(shù),得到函數(shù)的單調(diào)性,求出g(1)>g(2),從而求出答案.

解答 解:令g(x)=fxx4,(x>0),
則g′(x)=xfx4fxx5,
∵不等式xf'(x)<4f(x)恒成立,
∴xf'(x)-4f(x)<0,即g′(x)<0,
g(x)在(0,+∞)遞減,
故g(1)>g(2),
f2f1<16,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知正方形的中心為(0,-1),其中一條邊所在的直線方程為3x+y-2=0.求其他三條邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(α)=sinα•cosα.
(1)若f(α)=18,且\frac{π}{4}<α<\frac{π}{2},求cosα-sinα的值;
(2)若α=-\frac{31π}{3},求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于給定的直線l和平面a,在平面a內(nèi)總存在直線m與直線l( �。�
A.平行B.相交C.垂直D.異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知等比數(shù)列{an}中,a3=4,a4a6=32,則\frac{{{a_{10}}-{a_{12}}}}{{{a_6}-{a_8}}}的值為( �。�
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知棱長為4的正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn)分別是棱A1D1,A1B1,D1C1,B1C1的中點,求證:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知雙曲線的方程為\frac{x^2}{9}-\frac{y^2}{16}=1,則此雙曲線的實軸長為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,扇形的半徑為1,圓心角∠BAC=150°,點P在弧BC上運動,\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC},則\sqrt{3}m-n的最大值是(  )
A.1B.\sqrt{3}C.2D.2\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知圓C:(x-3)2+(y-2)2=4與直線y=kx+3相交于M,N兩點,若|MN|≥2\sqrt{3},則k的取值范圍是[-\frac{3}{4},0].

查看答案和解析>>

同步練習冊答案