【題目】對數(shù)是簡化繁雜運算的產(chǎn)物.16世紀時,為了簡化數(shù)值計算,數(shù)學家希望將乘除法歸結(jié)為簡單的加減法.當時已經(jīng)有數(shù)學家發(fā)現(xiàn)這在某些情況下是可以實現(xiàn)的.

比如,利用以下2的次冪的對應(yīng)表可以方便地算出的值.

4

5

6

7

8

9

10

11

12

16

32

64

128

256

512

1024

2048

4096

首先,在第二行找到16256;然后找出它們在第一行對應(yīng)的數(shù),即48,并求它們的和,即12;最后在第一行中找到12,讀出其對應(yīng)的第二行中的數(shù)4096,這就是的值.

用類似的方法可以算出的值,首先,在第二行找到4096128;然后找出它們在第一行對應(yīng)的數(shù),即127,并求它們的______;最后在第一行中找到______,讀出其對應(yīng)的第二行中的數(shù)______,這就是.

【答案】 5 32

【解析】

題設(shè)中給出的是第一行數(shù)的加法與第二行數(shù)的乘法的對應(yīng)關(guān)系,類比到所求的問題中就是第一行數(shù)的減法與第二行數(shù)的除法之間的對應(yīng)關(guān)系,從而可求規(guī)定的值.

題設(shè)中給出的計算方法是:

第一行數(shù)中兩數(shù)的和與與第二行數(shù)的對應(yīng)的兩數(shù)的乘積是匹配的,

因此,若在在第二行找到4096128,要求它們的商,

可以找出它們在第一行對應(yīng)的數(shù),即127,它們的差(5)在第二行中對應(yīng)的數(shù)(32)即為.

故答案為:差,5,32.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為抑制房價過快上漲和過度炒作,各地政府響應(yīng)中央號召,因地制宜出臺了系列房價調(diào)控政策.某市擬定出臺“房產(chǎn)限購的年齡政策”.為了解人們對“房產(chǎn)限購年齡政策”的態(tài)度,在2060歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“房產(chǎn)限購”的人數(shù)與年齡的統(tǒng)計結(jié)果如圖所示:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以44歲為分界點的不同人群對“房產(chǎn)限購年齡政策”的支持度有差異?

44歲以下

44歲及44歲以上

總計

支持

不支持

總計

2)若以44歲為分界點,從不支持“房產(chǎn)限購”的人中按分層抽樣的方法抽取8人參加政策聽證會,現(xiàn)從這8人中隨機抽2.記抽到44歲以上的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

參考公式:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且對一切正整數(shù)都有.

1)求證:;

2)求數(shù)列的通項公式;

3)是否存在實數(shù),使不等式,對一切正整數(shù)都成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓的左右焦點,與橢圓在第一象限的交點為,且, 三點共線.

(1)求橢圓的方程;

(2)設(shè)與直線為原點)平行的直線交橢圓兩點,當的面積取取最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓和圓、為橢圓的左、右焦點,點在橢圓上,當直線與圓相切時,

I)求的方程;

)直線與橢圓和圓都相切,切點分別為、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.

1)求曲線的普通方程和極坐標方程;

2)設(shè)直線與曲線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當時,,若有三個零點,則實數(shù)的取值集合是(

A.B.,

C.,D.,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市居民用天然氣實行階梯價格制度,具體見下表:

階梯

年用氣量(立方米)

價格(元/立方米)

第一階梯

不超過228的部分

3.25

第二階梯

超過228而不超過348的部分

3.83

第三階梯

超過348的部分

4.70

從該市隨機抽取10戶(一套住宅為一戶)同一年的天然氣使用情況,得到統(tǒng)計表如下:

居民用氣編號

1

2

3

4

5

6

7

8

9

10

年用氣量(立方米)

95

106

112

161

210

227

256

313

325

457

1)求一戶居民年用氣費y(元)關(guān)于年用氣量x(立方米)的函數(shù)關(guān)系式;

2)現(xiàn)要在這10戶家庭中任意抽取3戶,求抽到的年用氣量超過228立方米而不超過348立方米的用戶數(shù)的分布列與數(shù)學期望;

3)若以表中抽到的10戶作為樣本估計全市居民的年用氣情況,現(xiàn)從全市中依次抽取10戶,其中恰有k戶年用氣量不超過228立方米的概率為,求取最大值時的值.

查看答案和解析>>

同步練習冊答案