【題目】設(shè)圓的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E.
(I)證明為定值,并寫出點(diǎn)E的軌跡方程;
(II)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.
【答案】(Ⅰ)答案見解析;(Ⅱ).
【解析】
試題(Ⅰ)利用橢圓定義求方程;(Ⅱ)把面積表示為關(guān)于斜率k的函數(shù),再求最值.
試題解析:(Ⅰ)因?yàn)?/span>,,故,
所以,故.
又圓的標(biāo)準(zhǔn)方程為,從而,所以.
由題設(shè)得,,,由橢圓定義可得點(diǎn)的軌跡方程為:
().
(Ⅱ)當(dāng)與軸不垂直時(shí),設(shè)的方程為,,.
由得.
則,.
所以.
過點(diǎn)且與垂直的直線:,到的距離為,所以
.故四邊形的面積
.
可得當(dāng)與軸不垂直時(shí),四邊形面積的取值范圍為.
當(dāng)與軸垂直時(shí),其方程為,,,四邊形的面積為12.
綜上,四邊形面積的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(1)若直線過點(diǎn)且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為為坐標(biāo)原點(diǎn),滿足,求點(diǎn)的軌跡方程及的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有極大值32,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別為橢圓: 的左、右焦點(diǎn),點(diǎn)在橢圓上.
(Ⅰ)求的最小值;
(Ⅱ)設(shè)直線的斜率為,直線與橢圓交于, 兩點(diǎn),若點(diǎn)在第一象限,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個(gè)問題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為_________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,則下列為互斥的兩個(gè)事件是( )
A.“至少有一個(gè)黑球”與“都是黑球”B.“一個(gè)紅球也沒有”與“都是黑球”
C.“至少有一個(gè)紅球”與“都是紅球”D.“恰有個(gè)黑球”與“恰有個(gè)黑球”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn+對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是海岸線、上的兩個(gè)碼頭,為海中一小島,在水上旅游線上.測得,,到海岸線、的距離分別為,.
(1)求水上旅游線的長;
(2)海中 ,且處的某試驗(yàn)產(chǎn)生的強(qiáng)水波圓,生成小時(shí)時(shí)的半徑為.若與此同時(shí),一艘游輪以小時(shí)的速度自碼頭開往碼頭,試研究強(qiáng)水波是否波及游輪的航行?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com