【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.
方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
【答案】(1)詳解見解析;(2)690,604,594;406.
【解析】
(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,依題意知的可能取值,計(jì)算分布列即可;
(2)方案②中計(jì)算每個(gè)人的平均化驗(yàn)次數(shù),分別求出、3、4時(shí)的值,再與方案①比較,即可得出所求.
解:(1)由題可知,每個(gè)人的血樣化驗(yàn)呈陽性的概率為,
設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則,
所以個(gè)人的混合后呈陰性的概率為,呈陽性反應(yīng)的概率為,
依題意知的可能取值為,,
所以的分布列為;
(2)方案②中,結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:
;
所以當(dāng)時(shí),,
此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次;
當(dāng)時(shí),,
此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次;
當(dāng)時(shí),,
此時(shí)1000人需要化驗(yàn)的總次數(shù)為594次;
即時(shí)化驗(yàn)次數(shù)最多,時(shí)化驗(yàn)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少,
而采用方案①需要化驗(yàn)1000次,
所以在這三種分組情況下,相比方案①,
時(shí)化驗(yàn)次數(shù)最多可以平均減少(次.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,,求的最大值;
(2)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月12日我國(guó)出現(xiàn)了新型冠狀病毒所感染的肺炎,新型冠狀病毒的傳染性極強(qiáng).下圖是2020年1月26號(hào)到2月17號(hào)全國(guó)/湖北/非湖北新增新型冠狀病毒感染確診病例對(duì)比圖,根據(jù)圖象下列判斷錯(cuò)誤的是( )
A.該時(shí)段非湖北新增感染確診病例比湖北少
B.全國(guó)新增感染確診病例平均數(shù)先增后減
C.2.12全國(guó)新增感染確診病例明顯增加,主要是由湖北引起的
D.2.12全國(guó)新增感染確診病例數(shù)突然猛增,不會(huì)影響該段時(shí)期全國(guó)新增病例數(shù)的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)字1,2,3,4,5這五個(gè)數(shù)隨機(jī)排成一列組成一個(gè)數(shù)列,則該數(shù)列為先減后增數(shù)列的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點(diǎn).射線分別交于點(diǎn),動(dòng)點(diǎn)滿足直線與軸垂直,直線與軸垂直.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線交曲線與點(diǎn),射線與點(diǎn),且交曲線于點(diǎn).問:的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.
(1)求證:平面平面;
(2)若,,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(3)當(dāng)且時(shí),不等式在上恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),是什么曲線?
(2)當(dāng)時(shí),求與的公共點(diǎn)的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com