【題目】2019年12月12日我國出現(xiàn)了新型冠狀病毒所感染的肺炎,新型冠狀病毒的傳染性極強.下圖是2020年1月26號到2月17號全國/湖北/非湖北新增新型冠狀病毒感染確診病例對比圖,根據(jù)圖象下列判斷錯誤的是( )
A.該時段非湖北新增感染確診病例比湖北少
B.全國新增感染確診病例平均數(shù)先增后減
C.2.12全國新增感染確診病例明顯增加,主要是由湖北引起的
D.2.12全國新增感染確診病例數(shù)突然猛增,不會影響該段時期全國新增病例數(shù)的中位數(shù)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對m賦了三個值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯誤的是( )
參考公式:線性回歸方程中,其中,.相關(guān)系數(shù).
A.三條回歸直線有共同交點B.相關(guān)系數(shù)中,最大
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點,點是曲線上的動點, 為的中點.
(1)求點的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點為,與曲線的交點為,若的中點為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時至21世紀.環(huán)境污染已經(jīng)成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對的一項課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號召,準備每天從騎自行車和開小車兩種出行方式中隨機選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用“一次性拋擲6枚均勻硬幣”的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.
(1)求王先生前三天騎自行車上班的天數(shù)X的分布列;
(2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且,則對任一事件B有.設(shè)表示事件“第n天王先生上班選擇的是騎自行車出行方式”的概率.
①用表示;
②王先生的這種選擇隨機選擇出行方式有沒有積極響應(yīng)該市政府的號召,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車制造廠制造了某款汽車.為了了解汽車的使用情況,通過問卷的形式,隨機對50名客戶對該款汽車的喜愛情況進行調(diào)查,如圖1是汽車使用年限的調(diào)查頻率分布直方圖,如表2是該50名客戶對汽車的喜愛情況.
表2
不喜歡該款汽車 | 喜歡該款汽車 | 總計 | |
女士 | 11 | ||
男士 | 23 | 30 | |
總計 |
(1)將表2補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡該款汽車與性別有關(guān);
(2)根據(jù)圖中的數(shù)據(jù),甲說:“中位數(shù)在組內(nèi)”;乙說:“平均數(shù)大于中位數(shù)”;丙說:“中位數(shù)和平均數(shù)一樣”,針對三位同學(xué)的說法,你認為哪種說法合理,給出說明.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗1000次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.
假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.
(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com