8.隨著網(wǎng)絡(luò)信息時(shí)代的來(lái)臨,支付寶已經(jīng)實(shí)現(xiàn)了許多功能,如購(gòu)物付款、加油付款、理財(cái)產(chǎn)品等,使得越來(lái)越多的人在生活中使用手機(jī)支付的便捷功能,阿里巴巴公司研究人員對(duì)某地區(qū)年齡在10~60歲間的n位市民對(duì)支付寶的使用情況作出調(diào)查,并將調(diào)查的人員的年齡情況繪制成頻率分布直方圖如圖所示.

(1)若被調(diào)查的年齡在20~30歲間的市民有600人,求被調(diào)查的年齡在40歲以上(含40歲)的市民人數(shù);
(2)若按分層抽樣的方法從年齡在[20,30)以及[40,50)內(nèi)的市民中隨機(jī)抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行調(diào)查,求抽取的2人中,至少1人年齡在[20,30)內(nèi)的概率.

分析 (1)結(jié)合直方圖求出求出滿足條件的人數(shù)即可;
(2)先求出年齡在[20,30)、[40,50)內(nèi)的人數(shù),根據(jù)古典概率公式計(jì)算即可.

解答 解:(1)依題意,所求人數(shù)為$\frac{600}{0.03×10}×(0.02+0.005)×10=500$.
(2)依題意,年齡在[20,30)內(nèi)的有3人,記為A,B,C,
年齡在[40,50)內(nèi)的有2人.記為1,2;
隨機(jī)抽取2人,所有可能的情況為:
(A,B),(A,C),(A,1),(A,2),
(B,C),(B,1),(B,2),
(C,1),(C,2),(1,2),
共10種情況,
其中年齡都不在[20,30)內(nèi)的情況是(1,2),
故所求概率p=1-$\frac{1}{10}$=$\frac{9}{10}$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖、考查古典概型,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x={cos^2}θ\\ y={sin^2}θ\end{array}\right.$(θ為參數(shù)),曲線D的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=-$\sqrt{2}$.
(1)將曲線C,D的參數(shù)方程化為普通方程;
(2)判斷曲線C與曲線D的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側(cè)面APD為等腰直角三角形,PA⊥PD,平面PAD⊥平面ABCD.
(Ⅰ)求證:PA⊥面PCD;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在n元數(shù)集S={a1,a2,…,an}中,設(shè)χ(S)=$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$,若S的非空子集A滿足χ(A)=χ(S),則稱A是集合S的一個(gè)“平均子集”,并記數(shù)集S的k元“平均子集”的個(gè)數(shù)為fS(k),已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},則fS(4)+fT(5)=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2a,AA1=3a.
(Ⅰ)求證:平面A1BC1⊥平面BDD1B1;
(Ⅱ)求點(diǎn)B1到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序,則輸出的結(jié)果為( 。
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{4031}{2016}$D.$\frac{4033}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={0,1,2},A∩B={0,1},A∪B={0,1,2,3},則集合B的子集的個(gè)數(shù)為( 。
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)變量x,y滿足不等式組$\left\{\begin{array}{l}x+y-4≤0\\ x-3y+3≤0\\ x≥1\end{array}$,則z=$\frac{{|{x-y-4}|}}{{\sqrt{2}}}$的取值范圍是$[{\frac{{7\sqrt{2}}}{4},3\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則“$\overrightarrow{a}$•$\overrightarrow$>0”是“△ABC為銳角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案