【題目】給出下列四個(gè)命題:

①線性相關(guān)系數(shù)r的絕對(duì)值越大,兩個(gè)變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強(qiáng);

②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,平均值不變

③將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變

④在回歸方程4x+4中,變量x每增加一個(gè)單位時(shí),平均增加4個(gè)單位.

其中錯(cuò)誤命題的序號(hào)是(

A.B.C.D.

【答案】AB

【解析】

①線性相關(guān)系數(shù)r的絕對(duì)值越大,說明兩個(gè)變量間線性相關(guān)性越強(qiáng);

②給一組數(shù)據(jù)的每一個(gè)數(shù)同時(shí)加上或減去同一個(gè)常數(shù),平均數(shù)會(huì)相應(yīng)的增加或減小;

③方差反映一組數(shù)據(jù)的波動(dòng)的大小,由方差公式可判斷

④當(dāng)x每增加一個(gè)單位時(shí),可計(jì)算得平均增加4個(gè)單位

解:①因?yàn)榫性相關(guān)系數(shù)r的絕對(duì)值越大,說明兩個(gè)變量間線性相關(guān)性越強(qiáng),所以①不正確;

②給一組數(shù)據(jù)的每一個(gè)數(shù)同時(shí)加上或減去同一個(gè)常數(shù),平均數(shù)會(huì)相應(yīng)的增加或減小所加或減的常數(shù),所以②不正確;

③方差反映一組數(shù)據(jù)的波動(dòng)的大小,由方差公式知將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變,所以③正確;

④當(dāng)x每增加一個(gè)單位時(shí),可計(jì)算得平均增加4個(gè)單位,所以④正確;

故選:AB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,,,由頂點(diǎn)沿棱柱側(cè)面經(jīng)過棱到頂點(diǎn)的最短路線與棱的交點(diǎn)記為,求:

1)三棱柱的側(cè)面展開科的對(duì)角線長;

2)該最短路線的長及的值;

3)平面與平面所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的首項(xiàng)為,前項(xiàng)和為,若對(duì)任意的,均有是常數(shù)且)成立,則稱數(shù)列為“數(shù)列”.

(1)若數(shù)列為“數(shù)列”,求數(shù)列的通項(xiàng)公式;

(2)是否存在數(shù)列既是“數(shù)列”,也是“數(shù)列”?若存在,求出符合條件的數(shù)列的通項(xiàng)公式及對(duì)應(yīng)的的值;若不存在,請(qǐng)說明理由;

(3)若數(shù)列為“數(shù)列”, ,設(shè),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線交橢圓E于A,B兩點(diǎn),△ABF1的周長為16,△AF1F2的周長為12.

(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;

(2)若直線l與橢圓E交于C,D兩點(diǎn),且P(2,2)是線段CD的中點(diǎn),求直線l的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點(diǎn),則兩點(diǎn)的距離為(單位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某觀測(cè)站在目標(biāo)的南偏西方向,從出發(fā)有一條南偏東走向的公路,在處測(cè)得與相距的公路處有一個(gè)人正沿著此公路向走去,走到達(dá),此時(shí)測(cè)得距離為,若此人必須在分鐘內(nèi)從處到達(dá)處,則此人的最小速度為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),離心率為.分別是橢圓的上、下頂點(diǎn),是橢圓上異于的一點(diǎn).

1)求橢圓的方程;

2)若點(diǎn)在直線上,且,求的面積;

3)過點(diǎn)作斜率為的直線分別交橢圓于另一點(diǎn),交軸于點(diǎn),且點(diǎn)在線段上(不包括端點(diǎn)),直線與直線交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綿陽是黨中央、國務(wù)院批準(zhǔn)建設(shè)的中國唯一的科技城,重要的國防科研和電子工業(yè)生產(chǎn)基地,市某科研單位在研發(fā)過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時(shí),的二次函數(shù);當(dāng)時(shí),測(cè)得部分?jǐn)?shù)據(jù)如表:

(單位:克)

1)求關(guān)于的函數(shù)關(guān)系式;

2)求該新合金材料的含量為何值時(shí)產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

同步練習(xí)冊(cè)答案