【題目】有下列說法:
①若某商品的銷售量(件)關于銷售價格(元/件)的線性回歸方程為,當銷售價格為10元時,銷售量一定為300件;
②線性回歸直線一定過樣本點中心;
③若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1;
④在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關;
⑤在線性回歸模型中,相關指數(shù)表示解釋變量對于預報變量變化的貢獻率,越接近于1,表示回歸的效果越好;
其中正確的結論有幾個( )
A. 1B. 2C. 3D. 4
【答案】B
【解析】
由最小二乘法求解回歸直線和回歸直線的性質(zhì)可知①錯誤,②正確;隨機變量為負相關時,線性相關性越強,相關系數(shù)越接近,③錯誤;殘差圖中帶狀區(qū)域越窄,擬合度越高,④錯誤;越接近,模型擬合度越高,⑤正確;由此可得結果.
①當銷售價格為時,銷售量的預估值為件,但預估值與實際值未必相同,①錯誤;
②由最小二乘法可知,回歸直線必過,②正確;
③若兩個隨機變量為負相關,若線性相關性越強,相關系數(shù)越接近,③錯誤;
④殘差圖中,帶狀區(qū)域越窄,模型擬合度越高,④錯誤;
⑤相關指數(shù)越接近,擬合度越高,則在線性回歸模型中,回歸效果越好,⑤正確.
可知正確的結論為:②⑤,共個
本題正確選項:
科目:高中數(shù)學 來源: 題型:
【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
項目 | 男性 | 女性 | 總計 |
反感 | 10 | ||
不反感 | 8 | ||
總計 | 30 |
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補充完整(直接寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?
(2)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.
附:K2=
.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓具有如下性質(zhì):若、是橢圓上關于原點對稱的兩個點,點是橢圓上的任意一點,當直線、的斜率都存在,并記為、時,則與之積是與點位置無關的定值.試寫出雙曲線具有的類似的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知汽車站每天上午,之間都恰有一輛長途汽車經(jīng)過,但是長途車到站的時間是隨機的,且每輛車的到站時間是相互獨立的,汽車到站后即停即走,據(jù)統(tǒng)計汽車到站規(guī)律為:
現(xiàn)有一位旅客在到達汽車站,問:
(1)該旅客候車時間不超過20分鐘的概率;
(2)記該旅客的候車時間為,求的概率分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.
(1)求橢圓的離心率;
(2)設直線與橢圓交于兩點,若直線與的斜率之和為2,證明:過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列滿足:對于任意均為數(shù)列中的項,則稱數(shù)列為“ 數(shù)列”.
(1)若數(shù)列的前項和,求證:數(shù)列為“ 數(shù)列”;
(2)若公差為的等差數(shù)列為“ 數(shù)列”,求的取值范圍;
(3)若數(shù)列為“ 數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,點在橢圓上.不過原點的直線與橢圓交于兩點,且(為坐標原點).
(1)求橢圓的方程;
(2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com