13.若集合A={x|x<4且x∈N},B={x|x2-2x>0},則A∩B=( 。
A.{2}B.{3}C.{2,3}D.{3,4}

分析 分別求出關(guān)于集合A、B中的元素,取交集即可.

解答 解:∵集合A={x|x<4且x∈N}={0,1,2,3},
B={x|x2-2x>0}={x|x>2或x<0},
則A∩B={3},
故選:B.

點評 本題考查了集合的運算,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上頂點A(0,2),右焦點F(1,0),設(shè)橢圓上任一點到點M(0,6)的距離為d.
(1)求d的最大值;
(2)過點F的直線交橢圓于點S,T兩點,P為準(zhǔn)線l上一動點.
①若PF⊥ST,求證:直線OP平分線段ST;
②設(shè)直線PS,PF,PT的斜率分別為k1,k2,k3,求證:k1,k2,k3成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=sin(2x+α)+$\sqrt{3}$cos(2x+α)(0<α<$\frac{π}{2}$),且圖象關(guān)于直線x=$\frac{π}{24}$對稱,則( 。
A.函數(shù)f(x)的周期為π,且在區(qū)間[$\frac{π}{3}$,π]內(nèi)單調(diào)遞增
B.函數(shù)f(x)的周期為π,且在區(qū)間[$\frac{2π}{3}$,π]內(nèi)單調(diào)遞增
C.函數(shù)f(x)的周期為2π,且在區(qū)間[$\frac{2π}{3}$,π]內(nèi)單調(diào)遞增
D.函數(shù)f(x)的周期為$\frac{π}{2}$,且在區(qū)間[$\frac{π}{2}$,π]內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點是F,左、右頂點分別是A1,A2,過F做直線A1A2的垂線與雙曲線交于B,C兩點,若A1B⊥A2C,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=sin(x+$\frac{π}{4}$)+sin(x-$\frac{π}{4}$),x∈(0,2π),若f(x)=$\sqrt{2}$,則x=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={y|y≥-1},B={x|x≥2},則下列結(jié)論正確的是( 。
A.-3∈AB.3∉BC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知角x的終邊上一點P(-4,3),則$\frac{{cos(\frac{π}{2}+x)sin(-π-x)}}{{cos(\frac{π}{2}-x)sin(\frac{9π}{2}+x)}}$的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},則(∁UA)∩B=( 。
A.{4}B.{1,5,7}C.{1,2,5,7,8}D.{1,2,4,5,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)z=x+yi,x,y∈R,且|z-3|=1,則x2+y2+4x+1的最大值為33.

查看答案和解析>>

同步練習(xí)冊答案