【題目】如圖所示,平面,點(diǎn)在以為直徑的,點(diǎn)為線段的中點(diǎn),點(diǎn)在弧,.

(1)求證:平面平面;

(2)求證:平面平面

(3)設(shè)二面角的大小為,的值.

【答案】(1)證明見解析;(2)證明見解析;(3).

【解析】試題分析:

(1)ABC中位線的性質(zhì)可得平面.由線面平行的判斷定理可得平面.結(jié)合面面平行的判斷定理可得平面.

(2)由圓的性質(zhì)可得,由線面垂直的性質(zhì)可得,據(jù)此可知平面.利用面面垂直的判斷定理可得平面平面.

(3)以為坐標(biāo)原點(diǎn),所在的直線為軸,所在的直線為軸,建立空間直角坐標(biāo)系.結(jié)合空間幾何關(guān)系計(jì)算可得平面的法向量,平面的一個(gè)法向量,則.由圖可知為銳角,故.

試題解析:

(1)證明:因?yàn)辄c(diǎn)為線段的中點(diǎn),點(diǎn)為線段的中點(diǎn),

所以,因?yàn)?/span>平面,平面,所以平面.

因?yàn)?/span>,且平面,平面,所以平面.

因?yàn)?/span>平面,平面,,

所以平面平面.

(2)證明:因?yàn)辄c(diǎn)在以為直徑的上,所以,即.

因?yàn)?/span>平面,平面,所以.

因?yàn)?/span>平面,平面,,所以平面.

因?yàn)?/span>平面,所以平面平面.

(3)解:如圖,以為坐標(biāo)原點(diǎn),所在的直線為軸,所在的直線為軸,建立空間直角坐標(biāo)系.

因?yàn)?/span>,,所以,.

延長(zhǎng)于點(diǎn).因?yàn)?/span>,

所以,,.

所以,,.

所以.

設(shè)平面的法向量.

因?yàn)?/span>,所以,即.

,則,.

所以.

同理可求平面的一個(gè)法向量.

所以.由圖可知為銳角,所以.

型】解答
結(jié)束】
21

【題目】已知圓點(diǎn),直線.

(1)求與圓相切,且與直線垂直的直線方程

(2)在直線為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).

【答案】(1)(2)答案見解析.

【解析】試題分析:

(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,,然后證明為常數(shù)為即可.

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

試題解析:

(1)設(shè)所求直線方程為,即,

∵直線與圓相切,∴,得,

∴所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn)

當(dāng)為圓軸左交點(diǎn)時(shí),

當(dāng)為圓軸右交點(diǎn)時(shí),,

依題意,,解得,(舍去),或.

下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).

設(shè),則

,

從而為常數(shù).

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則

,將代入得,

,即

對(duì)恒成立,

,解得(舍去),

所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018廣東深圳市高三一模已知橢圓的離心率為,直線與橢圓有且只有一個(gè)交點(diǎn)

I)求橢圓的方程和點(diǎn)的坐標(biāo);

II 為坐標(biāo)原點(diǎn),與平行的直線與橢圓交于不同的兩點(diǎn), ,求的面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知右焦點(diǎn)為的橢圓)過點(diǎn),且橢圓關(guān)于

直線對(duì)稱的圖形過坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于點(diǎn) (異于橢圓的左、右頂點(diǎn)),線段的中點(diǎn)為.點(diǎn)是橢圓的右頂點(diǎn).求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;

⑵當(dāng),求函數(shù)的最小值;

⑶是否存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)對(duì)任意的m,nR都有f(mn)f(m)f(n)1,并且x0時(shí),恒有f(x)<1.

(1)試判斷f(x)R上的單調(diào)性,并加以證明;

(2)若f(3)4,解不等式f(a2a5)<2

(3)若關(guān)于的不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,滿足,且

(1)的通項(xiàng)公式;

(2),,成等差數(shù)列,求證:,,成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購量不會(huì)超過500.

1)設(shè)一次訂購量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)的表達(dá)式;

2)當(dāng)銷售商一次訂購450件服裝時(shí),該服裝廠獲得的利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng) 時(shí),討論 的極值情況;

(2)若 ,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案