分析 (Ⅰ)將已知等式通分后利用兩角和的正弦函數(shù)公式整理,利用正弦定理,即可證明.
(Ⅱ)由余弦定理求出A的余弦函數(shù)值,利用(Ⅰ)的條件,求解B的正切函數(shù)值即可.
解答 (Ⅰ)證明:在△ABC中,∵$\frac{cosA}{a}$+$\frac{cosB}$=$\frac{sinC}{c}$,
∴由正弦定理得:$\frac{cosA}{sinA}+\frac{cosB}{sinB}=\frac{sinC}{sinC}$,
∴$\frac{cosAsinB+cosBsinA}{sinAsinB}$=$\frac{sin(A+B)}{sinAsinB}=1$,
∵sin(A+B)=sinC.
∴整理可得:sinAsinB=sinC,
(Ⅱ)解:b2+c2-a2=$\frac{6}{5}$bc,由余弦定理可得cosA=$\frac{3}{5}$.
sinA=$\frac{4}{5}$,$\frac{cosA}{sinA}$=$\frac{3}{4}$
$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{sinC}{sinC}$=1,$\frac{cosB}{sinB}$=$\frac{1}{4}$,
tanB=4.
點評 本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,三角形面積公式的應用,考查了轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{43}{4}$ | B. | $\frac{49}{4}$ | C. | $\frac{37+6\sqrt{3}}{4}$ | D. | $\frac{37+2\sqrt{33}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分而不必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{15}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{15}$ | D. | $\frac{1}{30}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com