分析 (1)由題意設(shè)出橢圓的標(biāo)準(zhǔn)方程,并求得c,再由離心率求得a,結(jié)合隱含條件求得b,則橢圓方程可求;
(2)設(shè)出A、B的坐標(biāo),代入橢圓方程,作差求得AB所在直線的斜率,代入直線方程的點(diǎn)斜式得答案.
解答 解:(1)設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由題意c=2,又$e=\frac{c}{a}=\frac{1}{2}$,得a=4,
∴b2=a2-c2=12.
∴橢圓E的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;
(2)設(shè)A(x1,y1),B(x2,y2)代入橢圓E的方程得:
$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{12}=1$ ①,$\frac{{{x}_{2}}^{2}}{16}+\frac{{{y}_{2}}^{2}}{12}=1$ ②,
①-②得:$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{16}=-\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{12}$,
∵點(diǎn)P(2,1)為AB的中點(diǎn),
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{12({x}_{1}+{x}_{2})}{16({y}_{1}+{y}_{2})}=-\frac{12×4}{16×2}=-\frac{3}{2}$.
即${k_{AB}}=-\frac{3}{2}$.
∴點(diǎn)P(2,1)為中點(diǎn)的弦AB所在直線的方程為y-1=$-\frac{3}{2}$(x-2),
化為一般式方程:3x+2y-8=0.
點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查橢圓的簡單性質(zhì),訓(xùn)練了直線與橢圓位置關(guān)系的應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充要也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 18 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com