函數(shù)y=cos|2x|的最小周期為
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的周期性及其求法直接求值.
解答: 解:由于函數(shù)y=cos|2x|=cos2x的最小正周期為
2
=π,
故答案為:π.
點評:本題主要考查三角函數(shù)的周期性與求法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解下列不等式:
(1)
3
2
(-x2+
5
3
)≥
1
2
(x2+7)-3x;
(2)1-x-x2>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司在2014年上半年的收入x(單位:萬元)與月支出y(單位:萬元)的統(tǒng)計資料如下表所示:
月份1月份2月份3月份4月份5月份6月份
收入x12.314.515.017.019.820.6
支出Y5.635.755.825.896.116.18
根據(jù)統(tǒng)計資料,則( 。
A、月收入的中位數(shù)是15,x與y有正線性相關(guān)關(guān)系
B、月收入的中位數(shù)是17,x與y有負線性相關(guān)關(guān)系
C、月收入的中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
D、月收入的中位數(shù)是16,x與y有負線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l1的斜率為1,直線l2在x軸的截距為
3
,且l1∥l2,則直線l2的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1,拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于表中:
x3-24
3
y-2
3
0-4
1
2
(1)求C1、C2的標準方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足
OM
ON
?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,A(-4,0)D(-1,0),設△ABC是等腰三角形,點B在x軸上方,且BA=BC,D為BC的中點 若△ABC是正三角形,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點A、B、C的坐標分別為(0,1),(
2
,0),(0,-2),O為坐標原點,動點P滿足|
CP
|=1,則|
OA
+
OB
+
OP
|的最小值是( 。
A、4-2
3
B、
3
-1
C、
3
+1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(2,1)作直線l,與x軸和y軸的正半軸分別交于A,B兩點,求△AOB面積的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)x,y滿足
x+y≤1
x-y+1≥0
y≥0
,則x2+(y+1)2的最大值與最小值的差為
 

查看答案和解析>>

同步練習冊答案