某公司在2014年上半年的收入x(單位:萬元)與月支出y(單位:萬元)的統(tǒng)計(jì)資料如下表所示:
月份1月份2月份3月份4月份5月份6月份
收入x12.314.515.017.019.820.6
支出Y5.635.755.825.896.116.18
根據(jù)統(tǒng)計(jì)資料,則( 。
A、月收入的中位數(shù)是15,x與y有正線性相關(guān)關(guān)系
B、月收入的中位數(shù)是17,x與y有負(fù)線性相關(guān)關(guān)系
C、月收入的中位數(shù)是16,x與y有正線性相關(guān)關(guān)系
D、月收入的中位數(shù)是16,x與y有負(fù)線性相關(guān)關(guān)系
考點(diǎn):變量間的相關(guān)關(guān)系
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:月收入的中位數(shù)是
15+17
2
=16,收入增加,支出增加,故x與y有正線性相關(guān)關(guān)系.
解答: 解:月收入的中位數(shù)是
15+17
2
=16,收入增加,支出增加,故x與y有正線性相關(guān)關(guān)系,
故選:C.
點(diǎn)評(píng):本題考查變量間的相關(guān)關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若cosαcosβ+sinαsinβ=0,則sinαcosβ-cosαsinβ的值為( 。
A、-1B、0C、1D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+
2
x2
)(
x
-
1
x
6展開式中的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|,a<0.
(Ⅰ)證明f(x)+f(-
1
x
)≥2;
(Ⅱ)若不等式f(x)+f(2x)<
1
2
的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),P是以F1F2為直徑的圓與該雙曲線的一個(gè)交點(diǎn),且∠PF1F2=2∠PF2F1,則這個(gè)雙曲線的離心率是( 。
A、
3
+2
2
B、
3
+2
C、
3
+1
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=λan-
n
λ+1
,(λ≠±1,n∈N*).
(Ⅰ)如果λ=0,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如果λ=2,求證:數(shù)列{an+
1
3
}
為等比數(shù)列,并求Sn
(Ⅲ)如果數(shù)列{an}為遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題.①對(duì)任意的x∈R,x2+2>0;②對(duì)任意的x∈N,x4≥1;③存在x∈Z,x3<1;④存在x∈Q,使x2=3.其中真命題的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos|2x|的最小周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)將y表示為x的函數(shù)f(x),并求f(x)的對(duì)稱軸的方程;
(2)若函數(shù)y=f(x)的圖象在y軸的右側(cè)的最高點(diǎn)的橫坐標(biāo)組成一個(gè)數(shù)列{an},求a1+a2+…+a2016的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案