【題目】給出下列命題:(1)存在實數(shù)x,使=; (2)若是銳角△的內(nèi)角,則>; (3)函數(shù)y=sin( -)是偶函數(shù); (4)函數(shù)y=sin2的圖象向右平移個單位,得到y=sin(2+)的圖象.其中正確的命題的序號是____________.
科目:高中數(shù)學 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,我校舉行傳統(tǒng)文化知識競賽.其中兩位選手在個人追逐賽中的比賽得分如莖葉圖所示,則下列說法正確的是( )
A. 甲的平均數(shù)大于乙的平均數(shù)
B. 甲的中位數(shù)大于乙的中位數(shù)
C. 甲的方差大于乙的方差
D. 甲的平均數(shù)等于乙的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項和.
(1)若求;
(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面有四個結(jié)論:
①若數(shù)列的前項和為 (為常數(shù)),則為等差數(shù)列;
②若數(shù)列是常數(shù)列,數(shù)列是等比數(shù)列,則數(shù)列是等比數(shù)列;
③在等差數(shù)列中,若公差,則此數(shù)列是遞減數(shù)列;
④在等比數(shù)列中,各項與公比都不能為.
其中正確的結(jié)論為__________(只填序號即可).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形, , .以的中點為原點建立如圖所示的平面直角坐標系.
(1)求以、為焦點,且過、兩點的橢圓的標準方程;
(2)過點的直線交(1)中橢圓于、兩點,是否存在直線,使得弦為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知α,β是兩個不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個論斷:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三個論斷作為條件,余下一個論斷作為結(jié)論,寫出你認為正確的一個命題:____.(用序號表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:曲線C:(m+2)x2+my2=1表示雙曲線,命題q:方程y2=(m2﹣1)x表示的曲線是焦點在x軸的負半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2x的定義域是[2,16].設(shè)g(x)=f(2x)﹣[f(x)]2.
(1)求函數(shù)g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com