1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x)=a(x+1)(x-a),(a<0)且f(x)在x=a處取到極大值,那么a的取值范圍是(-1,0).

分析 討論a的范圍,以及a與-1的大小,分別判定在x=a處的導(dǎo)數(shù)符號(hào),從而確定是否在x=a處取到極大值,從而求出所求.

解答 解:當(dāng)-1<a<0時(shí),當(dāng)-1<x<a時(shí),f'(x)>0,
當(dāng)x>a時(shí),f'(x)<0,
則f(x)在x=a處取到極大值,符合題意;
當(dāng)a=-1時(shí),f'(x)≤0,函數(shù)f(x)無極值,不符合題意;
當(dāng)a<-1時(shí),當(dāng)x<a時(shí),f'(x)<0,
當(dāng)a<x<-1時(shí),f'(x)>0,
則f(x)在x=a處取到極小值,不符合題意;
綜上所述-1<a<0,
故答案為:(-1,0).

點(diǎn)評(píng) 本題主要考查了函數(shù)在某點(diǎn)取得極值的條件,解題的關(guān)鍵是分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若雙曲線$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1的離心率為2,則m的值是-36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.${∫}_{-π}^{π}$sin2$\frac{x}{2}$dx=( 。
A.0B.π-1C.πD.π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若2cosAcosB=1-cosC,則△ABC是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分別是線段AB、BC上的點(diǎn),且EB=FB=1.
(1)求直線EC1與FD1所成角的余弦值;
(2)求二面角C-DE-C1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)已知$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{5}{7}$,求sinα•cosα的值;
(Ⅱ)求$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$a=sin\frac{2π}{7}$,$b=cos\frac{12π}{7}$,$c=tan\frac{9π}{7}$,則(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x|x2-2x-3≤0},B={x|x>2},A∩B=(  )
A.[-1,3]B.(2,3]C.[-1,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案