11.若雙曲線$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1的離心率為2,則m的值是-36.

分析 根據(jù)題意,將雙曲線的方程變形為標(biāo)準(zhǔn)方程,分析可得a2=9,b2=-(m+9),由雙曲線離心率公式可得e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=1-$\frac{m+9}{9}$=4,解可得m的值.

解答 解:根據(jù)題意,雙曲線的方程為$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1,則其焦點在y軸上,且m+9<0,
則雙曲線的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{-(m+9)}$=1,
則a2=9,b2=-(m+9),
若雙曲線的離心率e=2,則有e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=1-$\frac{m+9}{9}$=4,
解可得m=-36,
故答案為:-36.

點評 本題考查雙曲線的幾何性質(zhì),注意先由雙曲線的標(biāo)準(zhǔn)方程分析m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$-m(lnx+$\frac{1}{x}$)(m為實數(shù),e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)m>1時,討論f(x)的單調(diào)性;
(Ⅱ)若g(x)=x2f′(x)-xex在($\frac{3}{2}$,3)內(nèi)有兩個零點,求實數(shù)m的取值范圍.
(Ⅲ)當(dāng)m=1時,證明:xf(x)+xlnx+1>x+$\frac{ln(x+1)}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是等差數(shù)列,a2=3,a6=7,則a11的值為(  )
A.11B.12C.13D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三次函數(shù)$f(x)=\frac{1}{3}{x^3}-({4m-1}){x^2}+({15{m^2}-2m-7})x+2$在x∈(-∞,+∞)是增函數(shù),則m的取值范圍是( 。
A.m<2或m>4B.-4<m<-2C.2<m<4D.以上皆不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(sin θ,-2),$\overrightarrow$=(cos θ,1),若$\overrightarrow{a}$∥$\overrightarrow$,則tan 2θ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知-1≤a≤3,2≤b≤4,則2a-b的取值范圍是( 。
A.[-6,4]B.[0,10]C.[-4,2]D.[-5,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{{x}^{2}+1,0≤x<5}\\{f(x-5),x>5}\end{array}\right.$,則f(2014)=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x)=a(x+1)(x-a),(a<0)且f(x)在x=a處取到極大值,那么a的取值范圍是(-1,0).

查看答案和解析>>

同步練習(xí)冊答案