下列函數(shù)中,在定義域內(nèi)是減函數(shù)的為( 。
A、y=-3x2
B、y=-
1
x
C、y=5x
D、y=-4x
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先利用函數(shù)的性質(zhì)注意判斷定義域及單調(diào)性,然后得出結(jié)論.
解答: 解:A.y=-3x2,定義域為R,在定義域上不單調(diào);
B.y=-
1
x
,定義域為{x|x≠0},在定義域內(nèi)不單調(diào);
C.y=5x在定義域R上單調(diào)遞增;
D.y=-4x在定義域R上單調(diào)遞減;
故選:D.
點評:本題考查基本初等函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某種報紙,進貨商當天以每份進價1元從報社購進,以每份售價2元售出.若當天賣不完,剩余報紙報社以每份0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若進貨量為n(單位:份),當n≥X時,求利潤Y的表達式;
(Ⅲ)若當天進貨量n=400,求利潤Y的分布列和數(shù)學期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1的單調(diào)減區(qū)間為(0,2)
(Ⅰ)求a,b的值;
(Ⅱ)當x∈[0,2]時,不等式mf′(x)+9m>x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(0,
π
2
),sin(α+
π
4
)=
3
5
,求sinα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形的三邊所在直線為x+2y=5,2x-y=5,2x+y=5,求三角形的內(nèi)切圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的三個內(nèi)角滿足:2B=A+C,且A<B<C,tanAtanC=2+
3
,求A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若過點A(3,0)的直線l與C:(x-1)2+y2=1有公共點,則直線l的斜率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求方程x2-2=0的所有實數(shù)根組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位向量
e1
,
e2
的夾角為120°,則|2
e1
-
e2
|=
 

查看答案和解析>>

同步練習冊答案