設(shè){an}是一個(gè)公差為d(d≠0)的等差數(shù)列,它的前10項(xiàng)和S10=110且a1,a2,a4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得(a1+d)2=a1(a1+3d),化簡結(jié)合S10=110可解得a1和d的值,可得通項(xiàng)公式.
解答: 解:∵a1,a2,a4成等比數(shù)列,∴
a
2
2
=a1a4,
又∵{an}是等差數(shù)列,∴a2=a1+d,a4=a1+3d,
∴(a1+d)2=a1(a1+3d),即
a
2
1
+2a1d+d2=
a
2
1
+3a1d,化簡可得a1=d,
∵S10=10a1+
10×9
2
d=110,∴10a1+45d=110.
又∵a1=d,∴55d=110,∴d=2,
∴an=a1+(n-1)d=2n
點(diǎn)評:本題考查等比數(shù)列和等差數(shù)列的性質(zhì),得出等差數(shù)列的公差d是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+xlnx.
(1)求函數(shù)f(x)的圖象在點(diǎn)P(1,1)處的切線方程;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若不等式f(x)≥-x2+(a+1)x-6在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份20042006200820102012
糧食需求量y/萬噸236246257276286
(1)作出散點(diǎn)圖,你能從散點(diǎn)圖中發(fā)現(xiàn)年份與糧食年需求量的一般規(guī)律嗎?
(2)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方
y
=bx+a;
(3)利用(2)中所求的直線方程預(yù)測該地2014年的糧食需求量.參考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知x∈R,a=x2+
1
2
,b=2-x,c=x2
-x+1,試證明a,b,c中至少有一個(gè)不小于1.
(Ⅱ)用分析法證明:若a>0,則
a2+
1
a2
+2≥a+
1
a
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex-
1
2
x2
(1)若f(x)在R上為增函數(shù),求a的取值范圍;
(2)若a=1,求證:x>0時(shí),f(x)>1+x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在x軸上,a:b=2:1,c=
6
,滿足此條件的橢圓的標(biāo)準(zhǔn)方程為( 。
A、
x2
2
+
y2
8
=1
B、
x2
8
+
y2
6
=1
C、
x2
6
+
y2
2
=1
D、
x2
8
+
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log2x+x=0的解所在的區(qū)間為( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過定點(diǎn)M(-1,0)且斜率為k的直線與曲線y=
9-(x+2)2
(0<x<1)有交點(diǎn),則k的取值范圍是( 。
A、(0,
5
B、(-
5
,0)
C、(0,
13
D、(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
是不共線的兩個(gè)非零向量,記
OM
=ma,
ON
=nb,
OP
=αa+βb,其中m,n,α,β均為實(shí)數(shù),m≠0,n≠0,若M、P、N三點(diǎn)共線,則
α
m
+
β
n
=
 

查看答案和解析>>

同步練習(xí)冊答案