下列命題中的真命題是(     )
?若命題,命題:函數(shù)僅有兩個零點,則命題為真命題;
?若變量的一組觀測數(shù)據(jù)均在直線上,則的線性相關系數(shù);
?若,則使不等式成立的概率是
A.??B.??C.?D.??
A

試題分析:命題是真命題,所以命題為真命題,故?是真命題;由線性相關的定義可知?正確;?不正確,故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

下表是某種產(chǎn)品銷售收入與銷售量之間的一組數(shù)據(jù):
銷售量x(噸)
2
3
5
6
銷售收入y(千元)
7
8
9
12
 
(1)畫出散點圖;(2)求出回歸方程;(3)根據(jù)回歸方程估計銷售量為9噸時的銷售收入.
(參考公式:     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x
2
4
5
6
8
y
30
40
60
50
70
 
(1)畫出散點圖;
(2)求y關于x的線性回歸方程.
可能用到公式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在獨立性檢驗中,統(tǒng)計量有兩個臨界值:3.841和6.635;當>3.841時,有95%的把握說明兩個事件有關,當>6.635時,有99%的把握說明兩個事件有關,當3.841時,認為兩個事件無關.在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算的="20." 87,根據(jù)這一數(shù)據(jù)分析,認為打鼾與患心臟病之間
A.有95%的把握認為兩者有關
B.約有95%的打鼾者患心臟病
C.有99%的把握認為兩者有關
D.約有99%的打鼾者患心臟病

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

從一批蘋果中,隨機抽取50個,其重量(單位:g)的頻數(shù)分布表如下:
分組(重量)
[80,85)
[85,90)
[90,95)
[95,100)
頻數(shù)(個)
5
10
20
15
 
(1)根據(jù)頻數(shù)分布表計算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個,其中重量在[80,85)的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,求重量在[80,85)和[95,100)中各有一個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)(2011•福建)某日用品按行業(yè)質(zhì)量標準分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機抽取20件,對其等級系數(shù)進行統(tǒng)計分析,得到頻率分布表如下:
X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的條件下,將等級系數(shù)為4的3件日用品記為x1,x2,x3,等級系數(shù)為5的2件日用品記為y1,y2,現(xiàn)從x1,x2,x3,y1,y2,這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結果,并求這兩件日用品的等級系數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為調(diào)查民營企業(yè)的經(jīng)營狀況,某統(tǒng)計機構用分層抽樣的方法從A、B、C三個城市中,抽取若干個民營企業(yè)組成樣本進行深入研究,有關數(shù)據(jù)見下表:(單位:個)
城市
民營企業(yè)數(shù)量
抽取數(shù)量
A

4
B
28

C
84
6
 
(1)求、的值;
(2)若從城市A與B抽取的民營企業(yè)中再隨機選2個進行跟蹤式調(diào)研,求這2個都來自城市A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結果如下:
 
支持A方案
支持B方案
支持C方案
35歲以下
200
400
800
35歲以上(含35歲)
100
100
400
 
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了8次試驗,數(shù)據(jù)如下:
零件數(shù)(個)
10
20
30
40
50
60
70
80
加工時間
62
68
75
81
89
95
102
108
設回歸方程為,則點在直線的(  )
A.左上方        B.右上方        C.左下方        D.右下方

查看答案和解析>>

同步練習冊答案