6.向面積為S的平行四邊形ABCD中任投一點M,則△MCD的面積小于$\frac{S}{3}$的概率為(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 先求出△MCD的面積等于$\frac{S}{3}$時,對應的位置,然后根據幾何概型的概率公式求相應的面積,即可得到結論

解答 解:設△MCD的高為ME,ME的反向延長線交AB于F,當“△MCD的面積等于$\frac{S}{3}$”時,$\frac{1}{2}CD×ME<\frac{1}{3}CD×EF$即ME$<\frac{2}{3}EF$,過M作GH∥AB,則滿足△MCD的面積小于$\frac{S}{3}$的點在?CDGH中,由幾何概型的個數(shù)得到△MCD的面積小于$\frac{S}{3}$的概率為$\frac{\frac{2S}{3}}{S}=\frac{2}{3}$;
故選C.

點評 本題主要考查幾何概型的概率公式的計算,根據面積之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.復數(shù)z=a2-2+(3a-4)i(a∈R)的實部與虛部相等,且z在復平面上對應的點在第三象限,則a=(  )
A.1B.2C.1或2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.平面直角坐標系xOy中,過橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F作直線$x+y-\sqrt{2}=0$交M于A,B兩點,P為AB的中點,且OP的斜率為$\frac{1}{2}$.
(1)求M的方程;
(2)設直線x-my+1=0交橢圓M于C,D兩點,判斷點$G(-\frac{9}{4},0)$與以線段CD為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若點P在y=x2上,點Q在x2+(y-3)2=1上,則|PQ|的最小值為( 。
A.$\sqrt{3}$-1B.$\frac{\sqrt{11}}{2}$-1C.2D.$\frac{\sqrt{10}}{2}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.圓${C_1}:{({x-1})^2}+{y^2}=1$與圓${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置關系是( 。
A.內切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知圓M:x2+y2=4,在圓周上隨機取一點P,則P到直線y=-x+2的距離大于$2\sqrt{2}$的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程為:ρ2cos2θ=1.
(1)以極點為原點,極軸為x軸正半軸,建立直角坐標系,求曲線C的直角坐標方程;
(2)若求直線,被曲線C截得的弦長為$2\sqrt{10}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.求值:log225•log3$\frac{1}{16}$•log5$\frac{1}{9}$=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函數(shù),那么a的取值范圍是( 。
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

查看答案和解析>>

同步練習冊答案